抽象的黄瓜(Cucumis sativus L.)是全球最重要的蔬菜作物之一,用于未成熟的水果。通过常规育种开发了几种具有许多经济特征的改良品种。基因组序列草案的可用性促进了过去二十年来基因组学工具在黄瓜改进中的广泛应用。C. sativus var。Hardwickii广泛分布在喜马拉雅山脉的北部山麓丘陵中,是当今耕种的黄瓜的祖先。通过常规育种方法开发了大量商业栽培品种和杂种。在杂种育种中,雌性性表达已被广泛用于经济上更加有效的杂种。遗传遗传和分子表征是针对许多特征,包括农业形态,质量,生物和非生物胁迫耐受性。此外,还针对特征的数量确定了候选基因,然后通过转化和敲除验证。性表达在这种作物中已被广泛研究,黄瓜是研究性表达的模型作物。对性表达的许多基因和其他经济上重要的特征进行了表征和克隆。发育具有多种疾病,质量和耐受性耐受性的近交,是未来黄瓜改善计划的主要重点。关键字:黄瓜,育种方法,性表达,胁迫耐受性,QTL,候选基因。
首次在菲律宾报道了国际大都会的地面sl,Deroceras laeve(O.F.Müller,1774年),并通过形态学,形态图和细胞色素氧化酶亚基I(COI)基因分析来表征。slug样品。在区域X中,有两个站点:Misamis Oriental(Gingoog,664 M A.S.L.; Claveria,937 M A.S.L.)种植了卷心菜(Brassica oleracea),萝卜(Raphanus sativus)和茄子(Solanum Melongena)的农场;和Bukidnon(Talakag,1410 M A.S.L.)种卷心菜。在XI区域中,从1000-1200 m A.S.L.的Davao del Sur的Kapatagan Road的五个托儿所中收集了标本。标本的外部形态与已发表的描述相匹配,其身份得到了其
QUANTITATIVE ESTIMATION OF METABOLITES AND ANTIFUNGAL EFFICACY OF LEAF EXTRACTS ASPILIA AFRICANA ON CUCUMBER AND PAWPAW FRUIT SPOILAGE FUNGI * 1 Akinjogunla Olajide Joseph, 2 Ijato James Yeni, 3 Adefiranye Oyetayo Olaoluwa, 1 Udofia Edinam-Abasi Sunny, 1 Etok Uko Christopher, and 1 Akang inyene Akan 1微生物学系,科学系,UYO大学,P.M.B.1017,尼日利亚Akwa Ibom州UYO,UYO,UYO 2号,2植物科学与生物技术系,Ekiti州立大学科学学院拉各斯,阿科卡,拉各斯州,尼日利亚 *通讯作者电子邮件地址:papajyde2000@yahoo.com电话:+2348064069404摘要摘要一些报告显示,全球大约25%的收获水果在全球范围内丢失了微生物的破坏。这项研究确定了阿非生体提取物的定量代谢产物和生物活性,从变质的黄瓜和卡里卡木瓜水果上进行了真菌。使用真菌学技术获得了变质的C. sativus和C.木瓜果实的真菌。分别使用标准方案和圆盘扩散技术确定了非洲A. Africana的水(Aleaa)和乙醇(Eleaa)提取物的定量代谢物和生物活性。获得的真菌属是曲霉,青霉,粘液,镰刀菌和根茎。提取物的百分比,物理外观和pH值有所不同。代谢物的定量估计结果表明,Aleaa的平均蛋白质,碳水化合物和脂质含量分别为15.36±0.32%,60.97±1.14%和6.66±0.04%。生物碱与蛋白质(r = 0.2028)和碳水化合物(r = 0.421)显示出正相关,而在p <0.05时,与脂质(r = -0.6556)的负相关性(r = -0.6556)。ELEAA对测试真菌分离株表现出更大的抑制作用,平均抑制区域(IZS)范围为9.3±0.1至18.8±0.3 mm,其平均IZ在9.4±0.4和16.0±1.0±1.0 mm之间。真菌展示的提取物和IZ的R系数范围为0.5985至0.9936。结果揭示了提取物的定量代谢产物和抗真菌活性,并为其利用作为防腐剂提供了用于防止真菌变质的水果的基本原理。关键字:代谢产物,阿斯皮利亚非洲人,生物活性,cucumis sativus,Carica Papaya。简介阿斯皮利亚非洲(Pers。)C. D. Adams是一种半木材和出血植物,属于Asteraceae家族(Komakech等,2019)。A. Africana广泛分布在西非,并且在萨凡纳和森林区的废料中发现(Abi and Onuoha,2011; Ijato等,2021)。这种多年生草药的高度在60至300厘米之间,具体取决于降雨量和土壤生育能力。在尼日利亚,非洲杂志在约鲁巴人被称为“ Yunyun”,igbo中的“ Orangila”,“ Tozalin”在Hausa中被称为“ Tozalin”,Efik中的“ Edemedong”和Esans(Abi and Onuoha,Onuoha,2011; Ajeigbe等人,2013年)。同样,在某些非洲国家中,非洲a。在基西(塞拉利昂)中被称为“ nyana”,在玛诺(喀麦隆)和玛诺(Liberia(Liberia)(Liberia)(Okello和Kang,2019年)中,KPE(喀麦隆)和“ Winnih”中的Akan-Akyem(Ghana)中的“ Fofo”,“ Mbnaso”。人类的人类,非洲抗体已被广泛报道
葫芦科作物是研究园艺植物长距离信号传导的合适模型。尽管数千种物质可通过嫁接传递到葫芦科植物中,但由于缺乏有效的遗传转化系统,功能研究受到了阻碍。本文,我们报告了一种方便有效的几种葫芦科作物根部转化方法,该方法将有助于研究功能基因和茎-根串扰。我们在 6 周内获得了根部完全转化和非转基因茎部的健康植物。此外,我们将这种根部转化方法与嫁接相结合,从而可以在砧木中进行基因操作。我们通过使用黄瓜 (Cucumis sativus)/南瓜 (Cucurbita moschata Duch.)(接穗/砧木)嫁接探索耐盐机制来验证我们的系统,其中在南瓜砧木中编辑了钠转运蛋白基因高亲和力 K + 转运蛋白 1 (CmoHKT1;1),并通过在黄瓜根中过度表达南瓜液泡膜 Na + /H + 反向转运蛋白基因钠氢交换器 4 (CmoNHX4)。
Ribatejo地区霍尔托工业作物的生产基于具有高技术干预的单一培养系统,这导致土壤生物多样性失衡,生育能力丧失和进行性降解。在这些系统中,在农业年主要农作物之前引入覆盖作物可以有助于改善生产系统的土壤状况和可持续性。目前的工作描述了在Ribatejo的两个现场试验中对土壤微生物指标的评估,其中安装了不同的覆盖作物:豆类和草的生物多样性混合物,包括接种根茎的三叶草;年度黑麦草(Lolium Multiflorum);和觅食萝卜(raphanus sativus)进行生物耗尽。在两个领域都保持了无覆盖作物的控制地块。评估集中于土壤酶活性(脱氢酶,碱性磷酸酶和β-葡萄糖苷酶)和几组微生物,包括总细菌,共生氮固定细菌(Rhizobia),散生氮的氮,磷酸细菌,磷酸化细菌 - 磷酸细菌 - 磷酸化磷酸化 - 磷酸化 - 磷酸化 - 磷酸化细菌溶质溶质 - 磷酸化盐溶质溶质溶剂溶质溶质溶剂溶质溶质溶质溶剂化磷酸化磷酸化细菌和磷酸化磷酸化磷酸化细菌和磷酸化磷酸化细菌。微生物。结果表明,土壤微生物活性增加和有益的微生物具有覆盖作物的趋势,尤其是豆类和草的生物多样性混合物以及每年的黑麦草。
农业面临的最大挑战之一在于找到策略,从而最大程度地减少因害虫和疾病而引起的农作物产量损失。白粉病(PM)是一种广泛的真菌疾病,影响了多种农作物。例如,在黄瓜(Cucumis sativus L.)中,PM可导致高达40%的损失(他等人2022)。各种研究的重点是鉴定有益于黄瓜育种计划的PM抗药性(PMR)基因(Liu等人2008)。 定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。 然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。 2015a,2015b; Berg等。 2015)。 耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。 2014)。 一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人 2022),表明钙信号传导与MLO介导的PM抗性有关。 但是,PM抗性的组成部分和机制均未完全理解。2008)。定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。2015a,2015b; Berg等。2015)。耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。2014)。一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人2022),表明钙信号传导与MLO介导的PM抗性有关。但是,PM抗性的组成部分和机制均未完全理解。
抽象的嫁接幼苗已成为世界许多地方的重要农业实践,用于生产和保护葫芦,免受生物和非生物胁迫的影响。盐度是埃及黄瓜的生长和生产力降低的主要非生物胁迫之一。This study aims to investigate the performance of commercial greenhouse cucumber hybrid (Hesham) grafted onto some genotypes and F1 hybrids rootstocks under salinity stress conditions (Salinity of the experimental soil and irrigation water were about 70.9 and 2.77 dS/m, respectively), at El-Anwar Farm, Cairo-Alexandria Desert Road, during summer seasons of 2020 and 2021under shade house 状况。此实验是在带有3个重复的随机完整块设计中进行的。与未移植对照相比,该实验包含14种处理,除7种F1杂交砧木外,还包括六种基因型rootstocks。结果表明,与未嫁接的植物相比,两个季节的植物高度,叶子面积,水果长度,果实长度,果实长度,果实长度,水果直径,产量和光合作用的植物高度,叶子面积,果实长度,果实长度和光合作用相比,与未枝的植物相比,植物的身高,果实重量,果实长度和光合作用可显着改善。 534556和siceraria pi 554556 x lagenaria siceraria pi 491365茎长度比第一个季节的非移植植物更大。在两个季节中嫁接到C. Maxima X C. Maxima X C. Maxima X C. Maxima X C. Moschata rootstock中,碳水化合物含量的最高值是在两个季节中估计的,而在两个季节中嫁接到Kalabsha rootstock上的黄瓜叶中估计了最高的脯氨酸含量。关键字:cucumis sativus,盐度压力,砧木,
1。Owais Ahmad Bhat,Rohitashw Kumar,Mukesh Kumar和Yasir Altaf(2015),“开发了印度克什米尔山谷的19个DAL集水区的微流域的确定性径流预测模型”,《土壤和水保护新系列》。印度土壤保护协会。1月至3月,14(1),19-3。 ISSN 0022–457X。 2。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2016年)。 “西喜马拉雅地区Lidder Basin的未来气候变化”。 第7卷,第3页。第334-353页国际水文学科学技术杂志,Inderscience Publishers .ISSN 2042-7816。 3。 Yasir Altaf,Rohitashw Kumar,Rubina Mir和Owais Ahmad Bhat,(2016年),印度卡什米尔河谷温带地区的藏红花(Crocus sativus)的新兴趋势的评估。 土壤和水保护杂志新系列。 印度土壤保护协会。 10月至12月15日(4),345-348。 ISSN 0022–457X。 4。 Altaf Y,Ahmad AM,Mohd F(2017)印度Lidder Basin地区的基于MLR的统计降低温度和降水量。 环境污染气候变化1:109。 5。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年)。 “对高海拔流域气候变化的水文反应”。 Inderscience Publishers 6。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2018年)。 “喜马拉雅河印度河盆地高空流域的水平衡研究:基于物理学的分布式水文模型的应用。”1月至3月,14(1),19-3。ISSN 0022–457X。2。Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2016年)。 “西喜马拉雅地区Lidder Basin的未来气候变化”。 第7卷,第3页。第334-353页国际水文学科学技术杂志,Inderscience Publishers .ISSN 2042-7816。 3。 Yasir Altaf,Rohitashw Kumar,Rubina Mir和Owais Ahmad Bhat,(2016年),印度卡什米尔河谷温带地区的藏红花(Crocus sativus)的新兴趋势的评估。 土壤和水保护杂志新系列。 印度土壤保护协会。 10月至12月15日(4),345-348。 ISSN 0022–457X。 4。 Altaf Y,Ahmad AM,Mohd F(2017)印度Lidder Basin地区的基于MLR的统计降低温度和降水量。 环境污染气候变化1:109。 5。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年)。 “对高海拔流域气候变化的水文反应”。 Inderscience Publishers 6。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2018年)。 “喜马拉雅河印度河盆地高空流域的水平衡研究:基于物理学的分布式水文模型的应用。”Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2016年)。“西喜马拉雅地区Lidder Basin的未来气候变化”。第7卷,第3页。第334-353页国际水文学科学技术杂志,Inderscience Publishers .ISSN 2042-7816。3。Yasir Altaf,Rohitashw Kumar,Rubina Mir和Owais Ahmad Bhat,(2016年),印度卡什米尔河谷温带地区的藏红花(Crocus sativus)的新兴趋势的评估。土壤和水保护杂志新系列。印度土壤保护协会。10月至12月15日(4),345-348。ISSN 0022–457X。4。Altaf Y,Ahmad AM,Mohd F(2017)印度Lidder Basin地区的基于MLR的统计降低温度和降水量。 环境污染气候变化1:109。 5。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年)。 “对高海拔流域气候变化的水文反应”。 Inderscience Publishers 6。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2018年)。 “喜马拉雅河印度河盆地高空流域的水平衡研究:基于物理学的分布式水文模型的应用。”Altaf Y,Ahmad AM,Mohd F(2017)印度Lidder Basin地区的基于MLR的统计降低温度和降水量。环境污染气候变化1:109。5。Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年)。“对高海拔流域气候变化的水文反应”。Inderscience Publishers 6。Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2018年)。“喜马拉雅河印度河盆地高空流域的水平衡研究:基于物理学的分布式水文模型的应用。”国际水文学科学技术杂志,知识分子出版商。7。Yasir Altaf,Manzoor Ahangar教授和Mohammad Fahimuddin博士(2019)使用耦合模型在Lidder River Basin中建模融雪径流,国际河流流域管理杂志,DOI:10.1080/15715124.2019.1634082。8。Yasir Altaf,Manzoor Ahanger,Mohammad Fahimuddin,(2016年),《自然资源管理:生态观点》。 MLR的统计降低了印度利地盆地地区温度和降水量。 vol.1。印度生态学会的诉讼,国际会议,克什米尔农业科学与技术大学(SKUAST),印度,2016年2月18日至20日。ISBN-978-93-5254-337-3。 9。 Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年),使用耦合模型在Lidder River Basin中对融雪径流进行建模。 由维也纳大学和NIH Roorkee组织的大河流地位和未来的国际会议,并在印度栖息地中心举行-Newdelhi。 (2017年4月18日至21日)。 10。 Yasiraltaf,Shakeel Ahmad Bhat,Shafat Khan等人(2017年),《克什米尔河谷生产藏红花的不同灌溉系统的绩效评估》。 由Skuast-K组织的藏红花生产和生产力的全国会议(2017年8月7日至8日)。Yasir Altaf,Manzoor Ahanger,Mohammad Fahimuddin,(2016年),《自然资源管理:生态观点》。MLR的统计降低了印度利地盆地地区温度和降水量。vol.1。印度生态学会的诉讼,国际会议,克什米尔农业科学与技术大学(SKUAST),印度,2016年2月18日至20日。ISBN-978-93-5254-337-3。9。Yasir Altaf,Manzoor Ahangar,Mohammad Fahimuddin,(2017年),使用耦合模型在Lidder River Basin中对融雪径流进行建模。由维也纳大学和NIH Roorkee组织的大河流地位和未来的国际会议,并在印度栖息地中心举行-Newdelhi。 (2017年4月18日至21日)。 10。 Yasiraltaf,Shakeel Ahmad Bhat,Shafat Khan等人(2017年),《克什米尔河谷生产藏红花的不同灌溉系统的绩效评估》。 由Skuast-K组织的藏红花生产和生产力的全国会议(2017年8月7日至8日)。由维也纳大学和NIH Roorkee组织的大河流地位和未来的国际会议,并在印度栖息地中心举行-Newdelhi。(2017年4月18日至21日)。10。Yasiraltaf,Shakeel Ahmad Bhat,Shafat Khan等人(2017年),《克什米尔河谷生产藏红花的不同灌溉系统的绩效评估》。由Skuast-K组织的藏红花生产和生产力的全国会议(2017年8月7日至8日)。
藏红花是番红花L.的干燥污名,是iridaceae家族的多年生球(7)。在伊朗,它是最昂贵的香料,称为“红金”(8)。由藏红花污名组成的化合物和成分包括鳄鱼,picrocrococin,crocetin和safranal,以及负责藏红花红色颜色的鳄鱼(9)。Based on the results of studies in animals and clinical trials, saffron and crocin exert significant pharmacological properties, such as hypoglycemic ( 10 ), hypolipidemic ( 11 ), antioxidant ( 12 ), anti-inflammatory ( 13 ), anticarcinogenic ( 14 ), neuroprotective ( 15 ), anti-depressive ( 16 ), and cardioprotective ( 17 ) activities, so it may have beneficial effects在糖尿病,动脉粥样硬化,癌症,神经系统疾病,抑郁和心血管疾病上。归因于抗炎和抗氧化活性,藏红花被认为可以改善代谢性疾病(18)。的确,多年来,多种临床前证据和初步研究以及临床试验表明,藏红花及其成分具有抗糖尿病作用。在研究摩洛哥和意大利藏红花提取物的一项体外研究中,这两种提取物都通过抑制2,2-二苯基-1-铅烯基氢唑(DPPH)而具有强大的抗氧化活性。使用α-淀粉酶和α-葡萄糖苷酶抑制测定法评估了抗糖尿病活性,这表明这些化合物具有降血糖作用。此外,椎间盘扩散方法表明,这两种提取物都对细菌有效(19)。对40个糖尿病大鼠的另一项实验设计为4周,旨在评估藏红花花瓣和锦缎玫瑰花瓣对炎症因子,禁食血浆葡萄糖(FPG),血红蛋白A1C(HBA1C)和脂质谱的影响。在藏红花花瓣组中,类似胰岛素样生长因子1(IGF-1),高敏C反应蛋白(HS-CRP),HBA1C,甘油三酸酯增加,甘油三酸酯增加,而FPG降低,而FPG降低,这将共同反映了蓝晶对改善Biochemical标记状态的益处(20)。尽管以前的荟萃分析报告了藏红花对血糖参数的影响,但结果不一致,并且没有一个集中在整个DM种群上(21-26)。由于缺乏对迄今为止发表的相关随机临床试验(RCT)的全面荟萃分析评估,因此我们进行了系统的综述和荟萃分析,以确定补充藏红花对糖尿病患者血糖指数的影响。