•峰Q因子> 20 @〜100MHz•峰电感密度〜300NH/mm2•L/RDC> 200NH/RDC> 100NH•100NH•L/RDC为L〜10NH的120NH/ω为120NH/ω•当前密度超过12A/mm2的速度超过1.5A的均超过12A/mm2•饱和度<3 pertrivation•饱和量均超过1.5a• •开发中的其他设备:•变压器,改进的电感器设计
编码拒绝的代码1 =未标记的DBS 9 =血液2 =饱和饱和10 =不适当的干燥3 =不足的血液11 =血清11 =血清环 - 水,酒精4 =刮擦点12 =在过期的DBS卡上收集的dbs Card 5 =散射点5 =散射点13 =包装在一起的样品
深入了解人类生理是维持水下操作环境中潜水员安全的关键。在下降期间,深度,上升时间以及潜水后可能带来持久后果的时间时,可能发生许多危险的生理现象。尽管安全措施和严格遵守潜水方案使这些事件很普遍,但仍会出现潜水障碍,通常不足以了解触发事件的因素。本综述首先研究了最常见的潜水障碍及其在娱乐和美国军事潜水活动中的发病率。The review then identi fi es physiological biomarkers (e.g., heart rate, heart rate variability, blood pressure, respiration rate, temperature, oxygen saturation) that may provide a holistic view of the diver ' s current physiological state and potentially detect the most concerning diving disorders (e.g., decompression illnesses, gas mixture- related disorders, barotraumas, and environment exposure).尽管仍然需要进行大量研究来验证在潜水环境中使用这些生物识别技术的使用,但本评论中描述的研究为开发系统的有前途的途径提供了一种可以检测到未决潜水障碍的系统,并在发生不事故之前向潜水员和其他必要的当事方提供预警。
• GCS 监控器中的工程学科可确保安全性和数据质量 • 定性地观察与飞行前模拟预测之间的差异 • 对闭环稳定性和振动阻尼进行实时评估 • 观察执行器速率限制和饱和度,这些因素会有效打开环路并导致失控 • 监控由执行器死区引起的极限环振荡 (LCO),将其作为不稳定性的指标 • 飞行后数据分析
• GCS 监控器中的工程学科用于确保安全性和数据质量 • 定性地观察与飞行前模拟预测之间的差异 • 对闭环稳定性和振动阻尼进行实时评估 • 观察执行器速率限制和饱和度,这些因素会有效地打开环路并导致失控 • 监控由执行器死区引起的极限环振荡 (LCO),将其作为不稳定性的指标 • 飞行后数据分析
摘要:固态量子发射器 (QE) 是光子量子信息处理的基础。由于 III 族氮化物半导体中 QE 的制造工艺复杂,且在光电子、高压功率晶体管和微波放大器等领域的应用日益广泛,因此人们对开发高质量的 QE 产生了浓厚的兴趣。本文报道了在氮化铝基光子集成电路平台中生成和直接集成 QE。对于单个波导集成 QE,在连续波 (CW) 激发下,在室温下测得的芯片外计数率超过 6 × 10 4 计数/秒 (cps;饱和率 >8.6 × 10 4 cps)。在未图案化的薄膜样品中,在连续波激发下,室温下测量了 g (2) (0) ∼ 0.08 的反聚束和超过 8 × 10 5 cps(饱和率 >1 × 10 6 cps)的光子计数率。虽然自旋和详细的光线宽度测量留待将来研究,但这些结果已经表明,高质量 QE 有可能单片集成在各种 III 族氮化物器件技术中,这将带来新的量子器件机会和工业可扩展性。关键词:薄膜氮化铝、量子发射器、光子集成电路、单光子、宽带隙半导体、量子光子学 Q
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。
动力电感探测器(儿童)是超导能量分解检测器,对从近红外到紫外线的单个光子敏感。我们研究了由β-相触觉(β -TA)电感器和NB -TI -N互插电容器组成的杂种KID设计。设备显示的平均内在质量因子Q I为4.3×10 5±1.3×10 5。为了增加光敏感应器捕获的功率,我们在蓝宝石基板的背面打印了150×150 µm树脂微胶片的阵列。设计和印刷镜头之间的形状偏差小于1 µm,并且该过程的比对精度为δx = + 5.8±0.5 µm,δy = + 8.3±3.3 µm。我们测量1545–402 nm的解决功率,在孩子的相响应中限制为4.9。我们可以与光子事件产生的准粒子数量的演化对相响应中的饱和度进行建模。具有线性响应的替代坐标系将分辨能力提高到402 nm的5.9。,我们使用激光源和单色器通过两行测量来验证测得的分辨力。我们讨论了可以在具有高分辨率能力的儿童阵列的途径上对设备进行的一些改进。
背景:为了改善症状并减少与心力衰竭(HF)相关的不良预后,国际准则建议心脏康复(CR),特别是对于射血分数减少的人。幸运的是,对康复计划的耐心依从性仍然是最佳的,辍学率在15.4%至63.3%不等。一种创新且有希望的干预措施,可以提高依从性的依从性是虚拟现实(VR)。This study aims to evaluate the effects of VR in patients with HF who undergo CR using this technology in terms of adherence (primary outcome), functional capacity, perceived exertion, angina, quality of life, heart rate, oxygen saturation, blood pressure, maximum oxygen uptake, minute ventilation/carbon dioxide production slope, oxygen pulse, blood values of NT-proBNP and HF related rehospitalization rates (次要结果)。方法:将在80名参考CR的患者的样本中进行一项随机对照试验。参与者将入学意大利一家大型大学医院的心脏康复单元,并随机分组(1:1),由由CR组成的实验干预措施,该干预措施由CR组成,该CR由高质量的沉浸式VR和PICO4®头部安装的显示器耳机和TreadmillXR®软件(ARM 1)或标准CR(ARM 2)。患者将以中等强度进行30分钟的CR疗程,每周两次,持续一个月。结果:干预组的患者预计原发性和继发性结果会有显着改善。结论:如果被证明是有效的,VR可能是一种创新,安全且容易的数字健康干预措施,以提高HF患者的CR依从性以及重要的临床结果。