用途:EpiNext™ CUT&LUNCH 检测试剂盒是一套完整的优化试剂,旨在快速从细胞中直接富集蛋白质(组蛋白或强结合转录因子)特异性 DNA 复合物,以通过 qPCR 或使用 Illumina 平台的下一代测序分析蛋白质与 DNA 之间的相互作用。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选的特定细胞等。细胞输入量:每个反应的细胞量可以是 2 x 10 3 到 5 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 2 x 10 5 ,尽管只需 500 个细胞即可获得修饰组蛋白的结果。抗体:抗体应为 ChIP 级,以识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K9me3)来证明这些抗体适合 ChIP。
吉隆坡(2月13日):其部长Datuk Seri Rafizi Ramli说,今年第二或第三季度将在今年的第二或第三季度推出Natu的天然气路线图。他说,政府打算以道路图为基于天然气对经济增长的520亿令吉的贡献。“我们想传达政府在关键监管问题上的立场,证明如何打扮这些障碍,并概述了建立强大的燃气基础设施的机会,以确保马来西亚的长期供应确保马来西亚的长期供应,”他在Ma-Laysian煤气座(Mygas 2025)的主题讲话中说。拉菲兹(Rafizi)表示,路线图还将在获得融资和燃气基础结构方面。“通过扩大我们的重新认证媒介和管道,我们希望增加技术工作的数量并维持该行业的社会经济影响。”根据拉菲兹(Rafizi)的说法,政府强大的政策支持的明确指导将增强对银行业和金融部门的信心,即天然气部门将成为该国经济的骨干。Rafizi强调,在考虑能源的地缘政治时,推动是重要的,并指出,全球天然气市场比原油更分散。“国家天然气路线图是能源的重要因素,即确保未来的天然气短缺的未来国家经济保持竞争力。“需要加强几个方面,这些方面涉及汽油市场机制和基础设施投资,”他说。他说,政府需要做出和完善这些决定,以便在批准和提出批准后可以立即实施。
检测DNA甲基化的常见方法使用硫酸盐或酶将未甲基化的C转换为在测序数据中读取为T。这导致核苷酸多样性低的文库很难对齐。亚硫酸盐治疗损害DNA的恶劣条件,在基因组数据中留下了很大的差距。Illumina 5基本化学直接以简单的单步直接将5MC转换为t,该步骤非启示DNA并保留了库复杂性。
硫氧还蛋白还原酶(TRXR)是含硒的吡啶核苷酸 - 二硫键氧化酶,以及与维持细胞氧化还原稳态有关的抗氧化剂硫氧还蛋白系统的一部分。1-3局部位于细胞质的TRXR:TRXR1的三种同工型,TRXR2和TRXR3位于线粒体。4所有TRXR同工型都催化了NADPH依赖性的氧化TRX和其他氧化蛋白二硫化物底物的还原,以及硒酸盐脂质氢过氧化物,维生素K和过氧化氢。1,2,4-7 TRXRS调节了几种氧化还原敏感的生物学过程,包括凋亡和细胞生长,增殖和生存,并与癌症,神经退行性疾病,慢性炎症性疾病,自身免疫性疾病和寄生虫的病理有关。4,8-10
“要使任何国家在全球经济中竞争,研究和创新都必须是其增长战略的核心。内布拉斯加州大学系统是内布拉斯加州创新的领先引擎,带来了研究美元,联邦投资,最重要的是,新教师和家庭带到内布拉斯加州进行改变世界改变世界的研究。大学的经济影响会导致新的创业公司,内布拉斯加州家庭的机会以及将在未来几代人维持国家的经济多元化。杰森·鲍尔(Jason Ball)总裁兼首席执行官,林肯商会“ Unk对我们的社区以及我们州的中部和西部地区发挥了宝贵的作用。让一所州立大学锚定在城市核心之外,可确保内布拉斯加州农村的学生可以培训并准备填补当地社区的工作。拥有一份关于UNK经济影响的报告很有帮助,但是我们的商业和社区领导者一直都知道,强大,充满活力的UNK至关重要。”
热蛋白质组分析 (TPP) 和高通量蛋白质组整体溶解度变化 (PISA) 检测等高通量技术的进步彻底改变了我们对药物-蛋白质相互作用的理解。尽管有这些创新,但缺乏用于对稳定性和溶解度变化数据进行交叉研究分析的综合平台,这是一个重大瓶颈。为了解决这一差距,我们推出了 DORSSAA(基于稳定性/溶解度变化检测的药物-靶标相互作用组学资源),这是一个交互式且可扩展的基于网络的平台,用于系统分析和可视化蛋白质组稳定性和溶解度变化检测数据集。目前,DORSSAA 拥有 480,456 条记录,涵盖 37 种细胞系和生物体、39 种化合物和 40,004 个潜在蛋白质靶标。通过其用户友好的界面,该资源支持比较药物-蛋白质相互作用分析并促进可操作治疗靶标的发现。我们利用白血病细胞系联合治疗中 DHFR-甲氨蝶呤相互作用和药物-靶标相互作用的两个案例研究,证明了 DORSSAA 在跨实验条件识别蛋白质-药物相互作用方面的实用性。该资源使研究人员能够加速药物发现并增强我们对蛋白质行为的理解。
热蛋白质组分析 (TPP) 和蛋白质组整体溶解度变化 (PISA) 等高通量技术的进步彻底改变了我们对药物-蛋白质相互作用的理解。尽管有这些创新,但缺乏用于对稳定性和溶解度变化数据进行交叉研究分析的综合平台,这是一个重大瓶颈。为了解决这一差距,我们推出了 DORSSAA(基于稳定性/溶解度变化分析的药物靶标相互作用组学资源),这是一个基于网络的交互式平台,用于系统分析和可视化蛋白质组稳定性和溶解度变化分析数据集。DORSSAA 拥有 480,456 条记录,涵盖 37 种细胞系和生物体、39 种化合物和 40,004 个潜在蛋白质靶标。通过其用户友好的界面,该资源支持比较药物-蛋白质相互作用分析并促进可操作治疗靶标的发现。我们通过白血病细胞系联合治疗中 DHFR-甲氨蝶呤相互作用和药物-靶标相互作用的两个案例研究,证明了 DORSSAA 在跨实验条件识别蛋白质-药物相互作用方面的实用性。该资源使研究人员能够加速药物发现并增强我们对蛋白质行为的理解。
百日咳的主要病原体百日咳是一种重新出现的病原体,最近中国爆发了疫苗耐药菌株,并出现了大环内酯类耐药菌株,这对该疾病的控制提出了新的担忧。因此需要新的疫苗和潜在的新抗生素。百日咳博德特氏菌培养繁琐,需要几天的生长时间才能在琼脂培养基上计数分离的菌落,这使得大规模筛选新的抗百日咳博德特氏菌化合物或对大量免疫血清进行功能评估变得困难。在此,我们开发了一种可扩展、快速、高通量的基于发光的百日咳博德特氏菌生长抑制测定法 (BGIA),以量化用抗百日咳博德特氏菌化合物处理后存活的细菌。发现发光和菌落形成单位之间存在很强的相关性 (r2 = 0.9345, p < 0.0001),并且 BGIA 表现出高灵敏度和重现性。我们在此证明,BGIA 可用于以易于操作和快速的方式量化百日咳博德特氏菌对抗生素的耐药性、对补体和对人血清的敏感性。我们优化了该检测方法,并测试了不同百日咳博德特氏菌菌株和生长条件对血清和补体敏感性的影响。我们还发现了补体独立的抗体介导的百日咳博德特氏菌生长抑制。因此,BGIA 可有效地用于大规模血清研究,以进一步在功能水平上研究抗百日咳博德特氏菌免疫反应,以及用于筛选百日咳博德特氏菌菌株对抗生素或补体的耐药性,以及用于新型抗百日咳博德特氏菌化合物的高通量筛选。
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性