螺丝包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4个backercelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 5 Bachmarydata。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 Baronpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 Bhaduri Organica Suitata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>7 Bhaduri Organica Suitata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8个对接Anescdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 BunishSpcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 CampbellbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 Chenbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个反机分子。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 Darmanisbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 erccspikeinconenentations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Ernstsermatogentesisdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16提取。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 Gilaihdihscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 Grunhscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 grunpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 Heorganatlasda。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Hermannstattotonesissdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 Hucortexdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 Jessabraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 Kolodziejczykescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 Kotliarovpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 Lamannobraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 Lawlorpancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 Ledergormyelomadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 lengescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35星期一。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36 MacCoretinadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 mairpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 MarquesbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 Messmerescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 Muraropancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 Netorowahscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 Nowawskiciceortexdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 Paulhscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45波兰人。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 Pollngliadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47个重新效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48重新处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49 RichardCelldata。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5149 RichardCelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51
多个实例学习(MIL)通过单细胞RNA-sequent(SCRNA-SEQ)数据提供了一种结构的方法来预测患者表型预测。但是,现有的MIL方法倾向于忽略SCRNA-Seq数据中固有的层次结构,尤其是细胞的生物组或细胞类型。这种情况可能会导致较高的细胞分裂水平下的次优性能和差的可解释性。为了解决这一差距,我们为基于注意力的MIL框架提供了一种新颖的企业层次信息方法。具体而言,我们的模型在细胞和细胞类型上介绍了基于注意力的聚集机制,因此在整个模型中的信息流程上实施了层次结构。在广泛的实验中,我们提出的方法始终优于现有模型,并在数据约束的情况下证明了鲁棒性。此外,消融测试结果表明,仅将注意力机理赋予细胞类型而不是细胞的注意力会导致性能提高,从而强调合并分层组的好处。通过识别与预测最相关的关键细胞类型,我们表明我们的模型能够捕获生物学上有意义的关联,从而促进生物学发现。
•使用来自8名狼疮患者的SCRNA-SEQ对周围单核血细胞(PBMC)进行了测序。患者被随机分为治疗和对照组。治疗组接受了干扰素β。
单细胞RNA测序(SCRNA-SEQ)在单细胞水平上对全转录组基因表达提供了前所未有的见解。细胞聚类长期以来在SCRNA-SEQ数据的分析中已建立,以识别具有相似表达谱的细胞组。然而,细胞聚类在技术上具有挑战性,因为原始的SCRNA-SEQ数据具有各种分析问题,包括高维度和辍学值。现有研究开发了深度学习模型,例如图形机器学习模型和基于对比度的学习模型,用于使用SCRNA-SEQ数据进行细胞聚类,并总结了将细胞聚类的无监督学习到人介入的格式中。虽然细胞聚类的进展是深刻的,但我们没有更接近找到一个简单而有效的框架来学习鲁棒聚类所需的高质量表示。在这项研究中,我们提出了SCSIMGCL,这是一个基于图形对比的学习范式的新型框架,用于图形神经网络的自我监督预处理。该框架促进了对细胞聚类至关重要的高质量表示的产生。我们的SCSIMGCL结合了细胞细胞图结构和对比度学习,以增强细胞聚类的性能。对模拟和实际SCRNA-SEQ数据集的广泛实验结果表明了所提出的SCSIMGCL的优势。此外,聚类分配分析证实了SCSIMGCL的一般适用性,包括最新的聚类算法。所提出的SCSIMGCL可以作为开发用于细胞聚类工具的从业者的强大框架。此外,消融研究和超参数分析表明,在自我监督的学习环境中,决策的鲁棒性表明了我们的网络体系结构的功效。SCSIMGCL的源代码可在https://github.com/zhangzh1328/scsimgcl上公开获得。
单细胞分析设施(SCAF)(https://crtp.ccr.cancer.gov/labs/scaf/)是专门用于癌症研究中单细胞技术的CCR设施。基于NIH Bethesda主校园,SCAF旨在提供有关实验设计,测序和数据分析咨询的最广泛的项目支持。在此概述介绍中了解有关SCAF和CCR研究人员可用的单细胞基因组技术。
摘要 在哺乳动物发育过程中,左心室和右心室分别来自被称为第一和第二心脏区的早期心脏祖细胞群。虽然这些群体已在非人类模型系统中得到广泛研究,但由于获取原肠胚期人类胚胎的伦理和技术限制,它们的鉴定和体内人体组织研究受到限制。人类诱导多能干细胞 (hiPSC) 因其已证实能够分化成所有胚胎胚层的能力而成为模拟早期人类胚胎发生的一种令人兴奋的替代方案。在这里,我们描述了 TBX5/MYL2 谱系追踪报告系统的开发,该系统允许识别 FHF 祖细胞及其后代,包括左心室心肌细胞。此外,我们使用基于寡核苷酸的样本多路复用的单细胞 RNA 测序 (scRNA-seq),在两个独立的 iPSC 系中广泛分析了 12 个时间点的分化 hiPSC。令人惊讶的是,我们的报告系统和 scRNA-seq 分析显示,使用基于小分子 Wnt 的 2D 分化方案,FHF 分化占主导地位。我们将这些数据与现有的小鼠和 3D 心脏类器官 scRNA-seq 数据进行了比较,并证实了我们 hiPSC 衍生的后代中左心室心肌细胞 (>90%) 占主导地位。总之,我们的工作为科学界提供了一种强大的新遗传谱系追踪方法以及正在经历心脏分化的 hiPSC 的单细胞转录组图谱。
背景。作为先天免疫系统效应,天然杀伤细胞(NK细胞)在肿瘤免疫疗法反应和临床结果中起着重要作用。方法。在调查中,我们收集了TCGA和GEO队列的卵巢癌样品,总共包括1793个样品。此外,还包括四个高级浆液卵巢癌SCRNA-SEQ数据以筛选NK细胞标记基因。加权基因共表达网络分析(WGCNA)识别与NK细胞相关的核心模块和中心基因。进行了“计时器”,“ Cibersort”,“ McPcounter”,“ Xcell”和“ Epic”算法,以预测每个样品中不同免疫细胞类型的效率特征。使用套索量算法来建立风险模型来预测预后。最后,进行了药物敏感性筛查。结果。我们首先在每个样品的填充中对NK细胞进行了评分,并发现NK细胞水平的水平影响了卵巢癌患者的临床结果。因此,我们分析了四个高级浆液卵巢癌SCRNA-SEQ数据,在单细胞水平上筛选NK细胞标记基因。WGCNA算法筛选基于大量RNA转录组模式的NK细胞标记基因。最后,我们的研究中总共包括42个NK细胞标记基因。随后,使用14个NK细胞标记基因为Meta-GPL570队列开发14基因预后模型,将患者分为高风险和低风险亚组。结论。该模型的预测性能在不同的外部人群中得到了很好的验证。肿瘤免疫微环境分析表明,预后模型的高风险评分与M2巨噬细胞,癌症相关的纤维细胞,造血干细胞,基质评分以及NK细胞,NK细胞,细胞毒性评分,B细胞分数,B细胞和T细胞CD CD4+TH1正相关。此外,我们发现博来霉素,顺铂,多西他赛,阿霉素,吉西他蛋白和依托泊苷在高风险组中更有效,而紫杉醇对低风险组患者的治疗性更好。通过利用NK细胞标记基因在我们的研究中,我们开发了一种新功能,能够预测患者的临床结果和治疗策略。