摘要我们提供了开源工具,用于3D分析人类大脑的剖面图片的照片,这些切片是在脑库中常规获取的,但很少用于定量分析。我们的工具可以:(i)3D从照片中重建一个音量,并选择地是表面扫描; (ii)每个半球的11个大脑区域产生高分辨率的3D分割(总共22个),与切片厚度无关。我们的工具可以用作离体磁共振成像(MRI)的替代品,该成像需要访问MRI扫描仪,离体扫描专业知识和相当大的财务资源。我们测试了来自两个NIH阿尔茨海默氏病研究中心的合成和真实数据的工具。结果表明,我们的方法可以得出与MRI高度相关的准确的3D重建,分割和体积测量值。我们的方法还检测到验尸确认阿尔茨海默氏病病例和对照之间的预期差异。这些工具可在我们的广泛神经成像套件“ freesurfer”(https://surfer.nmr.mgh.harvard.edu/fswiki/phototools)中获得。
为了增加人类神经影像学科学的粒度,我们设计并建立了下一代7 Tesla磁共振成像扫描仪,通过在硬件中实施多个进步,以达到超高分辨率。为了改善空间编码并增加了图像信号噪声比,我们开发了一个唯一的不对称梯度线圈(200 mt m -1,900 t m -1 s -1),并使用了另外的第三层绕组。我们集成了一个具有64和96通道接收器线圈阵列的128通道接收器系统,以在大脑皮层中增强信号,同时降低G因子噪声以实现更高的加速度。16通道发射系统降低了功率沉积和改善的图像均匀性。扫描仪通常在0.35-0.45 mm的各向同性空间分辨率下进行功能成像研究,以揭示皮质层功能活性,在扩散成像中实现高角度分辨率,并减少了功能和结构成像的习惯时间。
摘要 — 本研究提出了一种新的公共空间模式 (CSP) 公式,该公式通常用作脑机接口 (BCI) 和其他神经学研究中的强大特征提取技术。在这种方法中,应用于多个受试者的数据并命名为超 CSP,CSP 公式利用了多个同时记录的受试者脑电图之间的个体协方差和互相关矩阵。该方法旨在有效地隔离多个头部之间的共同运动任务,并减轻受试者固有或故意执行的其他虚假或不受欢迎的任务的影响。该技术可以在使用小数据量和低计算复杂度的情况下提供令人满意的分类性能。通过使用提出的超 CSP 和支持向量机分类器,在存在强烈不良任务的情况下,我们在 8 次试验中获得了 81.82% 的分类准确率。我们希望这种方法可以减少多任务 BCI 场景中的训练误差。记录的有价值的与运动相关的超扫描数据集将提供给公众使用,以促进该领域的研究。
融合了六个Motricolor合作伙伴,其开创性的彩色项目旨在使配对样品评估以鉴定原代相对于转移性样品的分子变化以及抗性克隆的采集。肿瘤样品。两个项目之间的紧密连通性和协作允许生成复杂的临床前临床试验相关的异种移植模型(CTAX),这些模型(CTAX)重现了小鼠患者疾病以测试新型疗法的功效以及识别和测量潜在的原发性或获得性抗性的功效。总共分析了55个配对样品,并直接从直接从Motricolor患者那里获得的肿瘤组织产生了13个CTAX模型。
摘要炎症性肠病(IBD)的当前主要治疗方法包括免疫调节剂(甲氨蝶呤和硫嘌呤),生物制剂(抗肿瘤坏死因子α(TNF-α)是最常用的)和其他单核粉抗抗生素和抗抗激素和抗抗激素和抗抗激素和233.23的23.2。理想的治疗应在疾病过程的早期开始以避免复发和并发症,但主要的经常性问题仍然是反应的初级和继发性丧失,并且在下一层为IBD患者规定的疗法的疗效方面通常会“回报降低”。其他担忧包括长期风险因素,例如恶性肿瘤和感染性易感性。最近,进入市场的新的和新兴的药物涌入,这些药物表现出了有希望的疗效,导致中度到重度疾病的患者以前未能对多种药物做出反应。本综述将重点介绍这些新颖和新兴的疗法,本质上是“地平线扫描”,其中包括抗粘附剂,细胞因子抑制剂,Janus激酶抑制剂,磷酸二酯酶抑制剂,鞘氨糖苷-1磷酸盐受体调节剂和micrororna-124-124(mir-im-124)。
特征向量2,导致1x128显着矢量。由于RNN-FC网络中权重的随机初始化,因此不能保证对同一组折叠功能进行训练的模型会收敛到一组最终权重。因此,我们重新训练了20次交叉验证的模型的集合,并类似地重新计算了每个样品的显着矢量。最终显着图是通过平均所有重复样本的归因图并在0到1之间的标准化来计算的。我们使用除一个(通道112)以外的所有通道的HG特征重复了此过程
作物。对 87 种芒属植物基因型的初步筛选确定了胚性愈伤组织形成和再生的显著差异,而另一子集则显示出通过农杆菌或基因枪转化的能力差异——所有这些因素都可能影响基因编辑效率。针对五种基因型开发了优化程序,其中包括一种 Msi (2x)、两种 Msa (2x 和 4x) 和一种 Mxg (3x)。设计了一种多步骤筛选方法来设计能够成功靶向基因同源物的 gRNA,有利于靶向古异源多倍体芒属植物中的基因。在玉米中靶向以通过 CRISPR/Cas9 产生突变体的视觉标记基因 lw1 [36, 37, 38] 被选为芒属植物的靶向基因。编辑后的 lw1 中的叶子表型(淡绿色/黄色、条纹、白色)是一个引人注目的视觉标记
光学扫描全息图(OSH)可以应用于3D荧光成像。但是,由于需要相位变速器,2D机械扫描仪和干涉仪,OSH的光学设置变得复杂。尽管一动不动的光学扫描全息图(MOSH)可以提出问题,但尚未实现定量相成像(QPI),因为MOSH只能获得不可接受的全息图。如果实现了MOSH中的QPI,则可以将MOSH应用于各种应用程序。在这封信中提出了基于MOSH的QPI(MOSH-QPI)。此外,还提供了对OSH连贯模式的简单描述。在原则实验中,使用空间分开的相移技术来减少测量数量。通过测量Microlens阵列的相分布来确认MOSH-QPI的可行性。MOSH-QPI也用于测量实际样品,并将其结果与使用Mach-Zehnder干扰物的常规结果进行比较。
FMR1基因编码称为FMRP的RNA结合蛋白(脆弱的X智力低下蛋白),位于XQ27.3中,具有17个外显子,延伸超过39 kb的基因组DNA。该基因在5'UTR区域具有CGG多态性重复。此重复序列中的突变是大多数情况的原因: