•NTU稀缺团队的一部分计划和毒性研究核心团队•使用HydromeTallurgy开发了一种有机过程,使用橙皮•开发过程目前正在进行中,扩展了橙皮超越橙皮并探索其他食物浪费选择•PILOT LINE位于SWM的物理地点;正在进行的商业评估
- 从不同传感器领域(光学摄像机、激光雷达、声纳、多波束、事件摄像机、高光谱传感)的低质量和/或稀缺数据中进行稳健识别。- 在高度动态环境或长期部署机器人系统中进行稳健识别。- 图像/视频恢复和增强,以消除由于低照度、色彩失真、恶劣天气、能见度差而导致的退化。- 新型传感器开发或传感器融合和校准技术,实现稳健的视觉感知。- 模拟环境和持续系统集成,即合成数据生成、模拟到现实世界的转换、硬件在环。- 视觉系统的低质量和稀缺数据挖掘、增强和处理方法。- 上述任何主题中的深度学习实践和机器学习管道。- 经过现场试验和部署及数据管理最佳实践的大量测试系统。- 对抗性和挑战性环境下计算机视觉算法和应用调查。- 上述任何一项在基于视觉的定位、配准、映射、建模、姿势估计和其他领域的应用。
4 如 EMRN DQF 中所述,数据集可能用于“一般性问题”,并且可从中得出一些质量阈值。然而,如果没有明确定义此类目标用途,则很容易随意设定此类阈值。即使在这种情况下,“不合格”数据集在不同的用例中仍可能有用,例如:如果数据非常稀缺且至关重要。
1 Hertie School,德国柏林2 QVIST COUNSTING LIMITED,英国伦敦 *通讯作者:ruhnau@hertie-school.org摘要。 在100%可再生电力系统的背景下,风和太阳能资源持续稀缺的延长时期受到了学术和政治的关注。 本文探讨了这种稀缺时期与能源储能需求的关系。 为此,我们基于使用35年的小时时间序列数据的德语100%可再生案例研究的时间序列分析与系统成本优化模型中的时间序列分析的对比。 我们的时间序列分析支持以前的发现,即持续稀少供应的时期持续不超过两周,但我们发现最大的能量不足发生在更长的9周期间。 这是因为多个稀缺时期可以互相跟随。 在考虑存储损失和充电限制时,定义存储要求的周期延长了多达12周。 在这个较长时期,与最稀有的两周的能量不足相比,成本优势的存储容量大约要大三倍。 为生物能源示例添加其他灵活性来源,定义存储需求的时期持续时间延长了一年以上。 在基于单年而不是多年时间序列优化系统成本时,我们发现存储需求的青年际差异很大,最极端的一年的存储时间是平均年份的两倍以上。1 Hertie School,德国柏林2 QVIST COUNSTING LIMITED,英国伦敦 *通讯作者:ruhnau@hertie-school.org摘要。在100%可再生电力系统的背景下,风和太阳能资源持续稀缺的延长时期受到了学术和政治的关注。本文探讨了这种稀缺时期与能源储能需求的关系。为此,我们基于使用35年的小时时间序列数据的德语100%可再生案例研究的时间序列分析与系统成本优化模型中的时间序列分析的对比。我们的时间序列分析支持以前的发现,即持续稀少供应的时期持续不超过两周,但我们发现最大的能量不足发生在更长的9周期间。这是因为多个稀缺时期可以互相跟随。在考虑存储损失和充电限制时,定义存储要求的周期延长了多达12周。在这个较长时期,与最稀有的两周的能量不足相比,成本优势的存储容量大约要大三倍。为生物能源示例添加其他灵活性来源,定义存储需求的时期持续时间延长了一年以上。在基于单年而不是多年时间序列优化系统成本时,我们发现存储需求的青年际差异很大,最极端的一年的存储时间是平均年份的两倍以上。我们得出的结论是,专注于短期的极端事件或单一年份可能会导致对存储要求和100%可再生系统的成本的低估。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
Aurora 是微软的天气预测 AI 基础模型,能够以更快的速度和比传统数值天气预测系统更低的计算成本做出准确的操作预报。此类模型的一个好处是,在数据稀缺的地区表现良好,使低收入国家能够民主化地获取准确的天气和气候信息,从而支持气候适应工作。
许多发展中国家的技术、卫生设施、电力和水资源仍然匮乏。约有 12 亿人无法获得可靠的电话服务。全世界有 23 亿人缺乏基本卫生设施,近 8 亿人缺乏水资源。在发展中国家,只有不到 30% 的农业产品经过工业加工。
社会租赁住房的改造是测试和推进循环经济住房的主要机会,但竞争稀缺的预算资源,并且由于缺乏清晰度和透明度而受到阻碍。为社会住房改造和质量升级提供资金将受益于有关可持续性的长期资助途径和行业建议。然后,社会住房提供商可以获得这笔资金,以降低能源成本并改善租户的生活环境。
在这种背景下,毫无疑问,水为许多可持续发展目标(SDG)支撑。SDG 6旨在确保所有人的水和卫生设施的可用性和可持续管理。不幸的是,该报告表明,到2030年实现这一目标将是一个挑战。在过去的二十年中,人口增长的人口增长,每人可用的淡水资源增长超过20%。随着需求的增加,淡水变得越来越稀缺,对其的竞争加剧,过多的水提取威胁着与水相关的生态系统和他们提供的生态系统服务。农业在可持续性的道路上发挥着重要作用,因为灌溉农业占全球抽水的70%以上,而且在全球范围内,有41%的提款与维持生态系统服务不兼容。雨养农业被要求补充稀缺的淡水资源的灌溉,但雨水也以有限的数量到来。此外,气候变化已经严重破坏了降雨模式。雨养农业中的干旱频率增加和随之而来的水短缺代表了生计和粮食安全的重大风险,特别是在世界上最不发达地区的最脆弱人群中。