光子学方法基于介电和半导体结构中E-和H-型MIE共振的激发已成为过去二十年来研究活动的对象。这些非质子共振技术被认为是创建新的超材料[1-6]并增加光电设备的量子产率[7,8]的途径。在这一领域的一个重要问题是可以设计MIE共鸣的特性。为实施MIE共振工程,可以在介电材料中实施从无定形到结晶状态的可逆过渡。特别是,可以使用结晶和进一步的激光诱导的这些SB 2 S 3谐振器[9]来实现SB 2 S 3纳米磁盘阵列中的可逆MIE共振调节。是一个理论上考虑了球形粒子的光散射,其介电常数在双倍频率下相对于入射光进行了调制,这表明有可能控制球体的MIE共振[10]。
Multibeam Echosounder(MBE)已成为海底映射的主要工具。技术进步和改进的数据处理方法提高了测深测量的准确性和空间分辨率,并且还导致了MBES反向散射数据的使用越来越多,用于海底地质和底栖生物栖息地映射应用。MBES BackScatter现在经常用于表征海洋陆战队和动物区系的栖息地,有助于开发有效的海洋空间规划和管理策略,并且通常可以更好地对海床进行分类。最近,进一步的技术进步使得在多声纳操作频率(多频反向散射)下对反向散射的获取和分析具有后续的潜在利益,可改善海底表征和分类。本评论重点介绍了与多频的海流声学反向散射相关的当前可用的同行评审论文,从而对不同底栖环境的贡献进行了全面的摘要,为相关应用程序和概述挑战和研究指示奠定了基础。
组织学分析是癌症诊断的黄金标准方法。但是,它容易出现主观性和采样偏差。应对这些局限性,我们引入了一种定量的双峰方法,旨在为可疑区域提供非侵入性指导。将光谱光谱和定量超声技术组合在一起,以表征来自动物模型的两种不同的骨肿瘤类型:软骨肉瘤和骨肉瘤。使用两种不同的细胞系诱导骨肉瘤的生长。进行组织学分析作为参考。光反射率的三个超声参数和强度显示,在5%水平上,软骨肉瘤和骨肉瘤之间存在显着差异。同样,尽管在组织学检查中观察到了两种类型的骨肉瘤,但两种类型的骨肉瘤的变化也被报道了两种类型的骨肉瘤。这些观察结果表明我们技术在探测细组织特性中的敏感性。其次,超声基于光谱的技术鉴定了软骨肉瘤细胞和核的平均大小,相对误差分别为22%和9%。光学当量技术正确提取了软骨肉瘤和骨肉瘤的细胞和细胞的散射尺寸分布(分别为9.5±2.6和µ)。软骨肉瘤的核的光散射贡献估计为52%,骨肉瘤的光散射贡献可能分别表明大量和不存在细胞外基质。因此,超声和光学方法带来了互补参数。他们在细胞和核尺度上成功估计了形态学参数,这使我们的双峰技术有望用于肿瘤表征。
有效和宽带向前散射对于元原子来说是重要的。强的竞争者包括具有定制多极含量的胶体纳米镜,以达到抑制后散射的适当干扰。我们考虑了由一百多个银纳米斑点组成的密集的等离子球。数值模拟提供了对多极矩在散射行为中起作用的作用的充分理解。它们是使用乳液干燥制造的,并具有光学特征。在整个可见范围内证明了强度和有效的前向散射。具有相等振幅和相位的电和磁偶极子共振。这种等离子球可以用作底部跨表面应用的元原子。
对液体表面和界面处发生在原子和分子水平上发生的过程的研究对于基本表面科学以及物理,化学和生物学中的实际应用至关重要(Pershan,2014; Dong etel。,2018年; Zuraiqi等。,2020年;他等人。,2021; Allioux等。,2022)。但是,在需要亚纳米精度时,基于同步加速器的X射线散射的实验方法使这些现象稀少,从而使基于同步加速器的X射线散射成为主要的选择。高强度的同步X射线梁,它们的高度紧凑的束尺寸和非常低的差异启用了以下时间分辨率的原位和操作实验,这对于标准的实验室X射线源是不可能的。最近对欧洲同步加速器辐射设施(ESRF)的升级允许使用具有前所未有的参数的极亮X射线源(EB)进行非常苛刻的实验(Raimondi,2016)。
我们介绍了在高折射率的二氧化硅玻璃玻璃玻璃玻璃玻璃玻璃玻璃玻璃的整体研究中的全面研究,在不同的飞秒泵浦波长和输入极化状态下。我们首先基于与熔融二氧化硅在48 THz和75 THz的共焦拉曼显微镜基于共焦拉曼显微镜的观察结果。然后,当分别在1200 nm,1300 nm和1550 nm处泵入异常分散体时,我们演示了从700 nm到2500 nm的宽带超脑产生。相反,在1000 nm的自相度调制和光波破裂的1000 nm处泵送时,会产生较窄的SC光谱。与包括新拉曼响应的非线性schr odinger方程的数值模拟发现了一个良好的协议。我们还研究了集成波导的TE/TM极化模式对SC生成的影响。
摘要:我们通过位于平坦介电底物上的平坦石材条的无限光栅考虑了电子极化平面波的散射和吸收。为了构建一个受信任的全波无网格算法,我们将散射问题扔给了双重系列方程,并基于离散傅立叶变换的倒数来执行其分析正则化。然后,对于未知的floquet谐波振幅,该问题将减少到Fredholm 2-Kind矩阵方程。因此,由Fredholm定理保证了所得代码的收敛性。数值实验表明,这种构型是频率选择性的跨表交或一个周期性光子晶体。如果光栅周期和底物厚度是微米大小的,则这种空腔的共振频率在Terahertz范围内。在电子极化情况下不存在等离子体模式,这些共振对应于底物的低Q板模式,并因光栅的存在而略微扰动,并且整个弹药的超高Q晶格模式作为周期开放式腔。我们使用我们的全波数值代码量化了它们的效果,并为晶格模式频率和Q因子得出渐近分析表达式。
共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
2025年2月15日的今晚和明天的天气预报,提示:预期雷暴散落,由于热带间收敛型区(ITCZ)的影响,主要在南部和中部地区,当地大雨主要在南部和中部地区。咨询:不要尝试越过洪水或快速流动的水。夏尔山谷(Shire河沿岸的地区以及奇塔湖和奇尔瓦湖周围)部分多云和温暖的条件,今晚和明天早晨孤立的雷暴。多云,明天下午有孤立的雷暴。预测温度:Ngabu Min.23°C和最大30°C南部高地(Shire Highlands,Kirk,范围为dedza,即预测温度:Ngabu Min.23°C和最大30°C南部高地(Shire Highlands,Kirk,范围为dedza,即ntcheu,Neno,Mwanza,Mulanje,Thyolo,Zomba,Chiradzulu,Phalombe和Blantyre)期望今晚和明天早晨在下雨中局部雷暴。多云,散落的雷暴与明天下午的当地大雨相结合。预测温度:Blantyre Min.19°C和最大25°C中央区域(Lilongwe,Mchinji,Ntchisi,Dowa,Dowa,Kasungu,Kasungu和Mzimba District的一部分),今晚和明天早上有孤立的thunderstorms。期望明天下午降雨散落的雷暴。预测温度:Lilongwe Min.19°C和最大27°C湖岸地区(Mangochi,Salima,Nkhotakota,Nkhotakota,Nkhata Bay,Karonga,Karonga)预计将在今晚和明天早上降雨。明天下午期望部分多云和炎热条件和雷暴。预测温度:Mangochi Min。 23°C和最大29°C北部地区(北部所有区域(除湖岸以外的所有区域))多云和温和条件,今晚和明天早晨孤立的雨水。预测温度:Mangochi Min。23°C和最大29°C北部地区(北部所有区域(除湖岸以外的所有区域))多云和温和条件,今晚和明天早晨孤立的雨水。明天下午多云和温暖的天气和孤立的雷暴。预测温度:mzuzu最小值。17°C和最大26°C风:暴风雨区的阵阵阵阵……周日的预测:期待当地的大雨...时间和日落的时间和日落明天2月15日,2025年2月15日,
临界维度(CD)控制在半导体行业至关重要,并且随着光刻限制不断推动以达到小于10 nm的技术节点而变得更具挑战性。为了确保过程的质量和控制,有必要探索新的计量技术。从这个意义上讲,临界小角度X射线散射(CDSAXS)已被确定为确定具有子纳米准确精度的线光栅的平均形状的潜在候选者。在本文中,我们将CDSAXS结果基于光学关键维度(OCD),临界尺寸扫描电子显微镜(CDSEM)和透射电子显微镜(TEM)测量,以前从制造线的工业计量工具和表征实验室中收集的先前从工业计量工具中收集的测量值。重点放在用于CDSAXS的模型以及如何改进的模型上。我们讨论了所有这些多尺度和多物理技术之间的差异,并质疑我们比较它们的能力。