项目 位置 Olympus 荧光显微镜 201B Biorad Biologic 紫外可见光检测器/馏分收集器 301D Biotek elx 800 微孔板读数仪 301D Thermo Sorvall legend X1R 冷冻离心机 301E Perkin elmer microbeta 2450 微孔板计数器 301D Thermos evolution 220 紫外可见光分光光度计 301D Sonics vibracell 301E 精密微处理器控制 280 水浴 (2) 301 & 301E ThermoSci Max Q6000 培养箱/振荡器 (2) 301 Isotemp 228 水浴 301 ThermoSci Heratherm 烤箱 301 Zeiss invertoskop 40c 显微镜 301 Beckman coulter optima L80k 超速离心机 301 Panasonic 高压灭菌器201、217、301、317 Eppendorf 5417R 离心机 301 Beckman 库尔特 Avanti J25 高速离心机(2) 301 & 217 Barnstead 实验室系列 MaxQ7000 水浴(2) 201 & 301 Beckman OptimaMax 台式超速离心机 301 组织培养生物安全柜 201C&D、301& 301H、317G Heracell 150 培养箱 201C&D、301& 301H、317G 缺氧室 CoyLab(Prentice 博士负责) 201D GE Nanovue 分光光度计 201G 3D 打印机 201H Eppendorf 真空泵 & Heto 冷阱 201 Beckman 库尔特 allegra离心机 317 Inotech 细胞采集器 301D New brunswick C76 水浴振荡器 217 New Brunswick Series 25 落地式振荡器(陆博士负责) 317 Thermo Stericycle 培养箱(2 台) 317G Beckman coulter optima L90k 超速离心机 217 Olympus BX41 显微镜 217F Eppendorf Centra CL5 离心机 217 Eppendorf mastercycler 热循环仪 217 Ultrospec 500 pro 分光光度计 217E BMG Labtech Polarstar omega 217D BioRad gene pulser x cell 317E Spectramax m5 217F Thermo Legend 21R Microfuge 301E Sorvall ST16 离心机 301H
系统探索了跨越数百万材料的化学空间,寻找具有针对特定技术应用的量身定制特性的化合物。[1-4]当前,预测化学计量的最有效方法是扫描固定晶体结构原型的组合空间。[5-7]在这种方法中,用于估计材料是否可以实验合成的关键材料特性是总能量,或者更多的是与热力学稳定性凸壳的能量距离。[6,8–17]典型地,给定化学成分和晶体结构原型(即,勇敢的晶状体的组合和一组占用的Wyckoff位置)进行几何优化,例如,使用密度功能理论的某些风味(DFT),并将其与之相比。[18,19]凸壳上的化合物(或接近它)进行表征,如果它们具有有趣的物理或化学特性,则提出了用于实验合成的。尽管如此,合成反应是极其复杂的过程,而与凸船的距离与合成性相关,但不足以决定是否可以在实验上访问材料。最近的几部作品通过直接预测最佳合成条件或合成概率来解决此问题。[20–25]
商品和服务的开发和生产通常受制于大量技术标准。从支付系统到门框或自动驾驶汽车的规格,工业化社会在经济的每个领域都严重依赖技术标准。通过定义一套通用的规则、指南和规格,标准化可以保证设备的互操作性、输入的兼容性或产品的安全性和质量,从而使生产者和消费者都受益。技术标准化还需要在众多竞争技术中选择一种,因为它旨在确保每个行业内最佳技术和实践的广泛传播。从这个意义上说,标准化过程与技术进步齐头并进:当新技术出现时,就会定义新的标准以促进其大规模采用。
商品和服务的开发和生产通常受制于大量技术标准。从支付系统到门框或自动驾驶汽车的规格,工业化社会在经济的每个领域都严重依赖技术标准。通过定义一套通用的规则、指南和规格,标准化可以保证设备的互操作性、输入的兼容性或产品的安全性和质量,从而使生产者和消费者都受益。技术标准化还需要在众多竞争技术中选择一种,因为它旨在确保每个行业内最佳技术和实践的广泛传播。从这个意义上说,标准化过程与技术进步齐头并进:当新技术出现时,就会定义新的标准以促进其大规模采用。
摘要:为降低脑机接口(BCI)的准确率差异,提出了一种新的运动想象(MI)分类白化技术。该方法旨在提高脑电图特征脸分析对 BCI 的 MI 分类的性能。在 BCI 分类中,为了获得优异的分类结果,受试者之间的准确率差异对准确率本身很敏感。因此,借助 Gram-Schmidt 正交化,我们提出了一种 BCI 通道白化(BCICW)方案来最小化受试者之间的差异。新提出的 BCICW 方法改善了真实数据中 MI 分类的方差。为了验证和检验所提出的方案,我们使用 MATLAB 仿真工具对 BCI 竞赛 3 数据集 IIIa(D3D3a)和 BCI 竞赛 4 数据集 IIa(D4D2a)进行了实验。对于 D3D3a,使用基于 Gram–Schmidt 正交化的 BCICW 方法时,方差数据 (11.21) 远低于使用 EFA 方法 (58.33) 时,对于 D4D2a,方差数据从 (17.48) 降至 (9.38)。因此,所提出的方法可有效用于 BCI 应用的 MI 分类。
摘要目的这一系统评价旨在评估机器学习(ML)算法在预测医疗患者院内死亡率(使用急诊科(EDS))的院内死亡率方面的性能和临床可行性。设计进行了系统的审查。在2010年至2021年之间搜索了包括Medline(PubMed),Scopus和Embase(OVID)在内的数据库,以提取英文发表的文章,描述了利用生命体征变量的基于ML的模型来预测EDS接受的患者的院内死亡率。对预测建模研究检查清单的系统评价的批判性评估和数据提取用于研究计划和数据提取。使用偏见评估工具的预测风险评估了纳入论文的偏见风险。参与者接纳了ED的患者。主要结果措施院内死亡率。结果将15篇文章包括在最终审查中。我们发现,该域已应用八个模型,包括逻辑回归,决策树,k-nearest邻居,支持向量机,梯度提升,随机森林,人工神经网络和深层神经网络。大多数研究未报告基本的主要分析步骤,例如数据预处理和处理丢失值。14种研究在统计分析部分中具有很高的偏见风险,这在实践中可能导致绩效差。尽管所有研究的主要目的是开发了死亡率的预测模型,但九篇文章并未为预测提供时间范围。结论本评论提供了最新的最新概述,并揭示了研究差距;基于这些,我们为将来的研究提供了八项建议,以使ML在实践中更可行。通过遵循这些建议,我们希望将来会看到更多可靠的ML模型,以帮助临床医生较早地识别患者恶化。
Bernd Richter、Philipp Wartenberg、Stephan Brenner、Johannes Zeltner、Christian Schmidt、Judith Baumgarten、Andreas Fritscher、Martin Rolle、Uwe Vogel 德国德累斯顿 Fraunhofer IPMS 一种新型半透明硅基 OLED 微显示技术,为纤薄近眼光学器件提供了新的光学设计机会
摘要 - 该论文使用RGB-D摄像机提出了一个实时的人类交互检测系统,以启用移动机器人的上下文感知导航。该系统采用了优化的综合神经网络(CNN)体系结构,可有效推断嵌入式GPU。使用基于键盘检测的人类检测器在RGB-D图像上,使用人类对象检测将相互作用定位于3D场景中。将人类相互作用区域集成到机器人的导航成本图中,以修改计划的社会空间的计划路径。该系统通过模拟和现实世界测试验证,显示可靠的相互作用检测超过10 Hz。可以将模块化系统(称为NAV2CAN)添加到ROS2(机器人操作系统2)中运行的移动机器人中,并实现与其他软件包的容易集成和兼容性。通过将基于深度学习的感知与语义导航成本图结合在一起,可以实现人类环境中的社会意识机器人导航。索引术语 - 文本意识到导航,人类机器人间行动,移动机器人,ROS2,NAV2,Proxemics
目标:临床实验室测试提供了进行医学诊断的基本数据。生成准确,及时的测试结果清楚地传达给治疗临床医生,最终是患者,是支持诊断卓越的关键组成部分。另一方面,未能实现这一目标可能会导致诊断错误,这些错误表现出在错过,延迟和错误的诊断中。内容:支持诊断卓越的创新地址:1)测试利用,2)利用临床和实验数据,3)促进使用可信信息资源的使用,4)增强实验室专业人员,卫生保健提供者和患者之间的沟通,以及5)5)诊断管理团队的使用。基于证据的实验室和患者护理质量管理方法可能会提供支持卓越诊断的策略。 专业社会,政府机构和医疗保健系统正在积极努力提高卓越诊断。 利用医疗保健系统内的临床实验室能力可以衡量地改善诊断过程并减少诊断错误。 摘要:建立在现有流程和措施的基础上的扩展质量管理方法可以促进基于证据的实验室和患者护理质量管理方法可能会提供支持卓越诊断的策略。专业社会,政府机构和医疗保健系统正在积极努力提高卓越诊断。利用医疗保健系统内的临床实验室能力可以衡量地改善诊断过程并减少诊断错误。摘要:建立在现有流程和措施的基础上的扩展质量管理方法可以促进
先前的分析 Nagelhout 2009 Shinoda 2011 Mayer 2012 Matteson 2015 Hoffmann 2015 - 选举。 Hoffmann 2015 - 自动。 Kittner 2017 Schmidt 2017 - 选举。 1 Schmidt 2017 - 选举。 2 Schmidt 2017 - 18650 Michaelis 2018 - 小 Michaelis 2018 - 自动。 Schmidt 2019 - 选举。 1