Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
澳大利亚新兴人畜共患病毒生物监测 (BEZVA) 项目与 Gulbali 生物安全大挑战相一致,旨在对抗入侵物种和病毒,以便我们能够生产出最优质的农产品并建立健康的社区。BEZVA 还致力于应对 Gulbali 气候变化适应大挑战以及由此产生的一系列重大挑战。科罗拉多州立大学将与国内外领先的研究机构合作,在保障澳大利亚公共卫生、农业经济和生物多样性方面发挥关键作用。为期四年的 BEZVA 项目将研究外来病毒对动物和人类的威胁,特别是在澳大利亚价值数十亿美元的农业部门的背景下。BEZVA 项目将通过在病毒检测、分子病毒学、疾病建模和生物监测等关键领域建立本地和国家专业知识来解决这一问题。
1。美国国务院。人工智能(AI)。2024 www.state。gov/人工智力2。IBM。 什么是生成的AI? 2024 https://research.ibm.com/blog/ what-is-generative-ai 3。 哈佛大学。 格里芬艺术与科学研究生院。 人工智能的历史。 2019 https://sitn.hms.harvard.edu/flash/ 2017/ history-tistory-arthercover-intelligence/4。 福布斯。 Chatgpt的简短历史:我们如何到达今天的位置。 2023 https://www.forbes.com/sites/bernardmarr/2023/05/ 19/a-short-hort-history-of-chatgpt-how-we-we-we-we-got-we-got-to-wor-wher-where-wher-where-wher-where-we-are-today/? sh = 5abebd09674f 5。 Smoke S.药房中的人工智能:临床医生指南。 AM J Health-syst Pharm。 2024; 81:641 - 646。https://doi.org/10.1093/ ajhp/zxae051 6。 Wong A,Flanagan T,Covington EW,Nguyen E,Linn DD,Brummel G等。 预测人工智能对临床伪类实践的影响。 J Am Coll Clin Pharm。 2025; 7(3)。 7。 射线pp。 chatgpt:有关背景,应用,关键挑战,偏见,道德,局限性和未来范围的全面审查。 网络网络系统。 2023; 3:121 - 154。https://doi.org/10.1016/ j.iotcps.2023.04.003 8。 AI研究所。 语义学者。 2024 https:// www。 Spenticscholar.org/ 9。 div> 引起。 2024。https://elitic.com/10。 共识。 共识:AI搜索引擎进行研究。IBM。什么是生成的AI?2024 https://research.ibm.com/blog/ what-is-generative-ai 3。哈佛大学。 格里芬艺术与科学研究生院。 人工智能的历史。 2019 https://sitn.hms.harvard.edu/flash/ 2017/ history-tistory-arthercover-intelligence/4。 福布斯。 Chatgpt的简短历史:我们如何到达今天的位置。 2023 https://www.forbes.com/sites/bernardmarr/2023/05/ 19/a-short-hort-history-of-chatgpt-how-we-we-we-we-got-we-got-to-wor-wher-where-wher-where-wher-where-we-are-today/? sh = 5abebd09674f 5。 Smoke S.药房中的人工智能:临床医生指南。 AM J Health-syst Pharm。 2024; 81:641 - 646。https://doi.org/10.1093/ ajhp/zxae051 6。 Wong A,Flanagan T,Covington EW,Nguyen E,Linn DD,Brummel G等。 预测人工智能对临床伪类实践的影响。 J Am Coll Clin Pharm。 2025; 7(3)。 7。 射线pp。 chatgpt:有关背景,应用,关键挑战,偏见,道德,局限性和未来范围的全面审查。 网络网络系统。 2023; 3:121 - 154。https://doi.org/10.1016/ j.iotcps.2023.04.003 8。 AI研究所。 语义学者。 2024 https:// www。 Spenticscholar.org/ 9。 div> 引起。 2024。https://elitic.com/10。 共识。 共识:AI搜索引擎进行研究。哈佛大学。格里芬艺术与科学研究生院。人工智能的历史。2019 https://sitn.hms.harvard.edu/flash/ 2017/ history-tistory-arthercover-intelligence/4。福布斯。Chatgpt的简短历史:我们如何到达今天的位置。2023 https://www.forbes.com/sites/bernardmarr/2023/05/ 19/a-short-hort-history-of-chatgpt-how-we-we-we-we-got-we-got-to-wor-wher-where-wher-where-wher-where-we-are-today/?sh = 5abebd09674f 5。Smoke S.药房中的人工智能:临床医生指南。AM J Health-syst Pharm。2024; 81:641 - 646。https://doi.org/10.1093/ ajhp/zxae051 6。Wong A,Flanagan T,Covington EW,Nguyen E,Linn DD,Brummel G等。预测人工智能对临床伪类实践的影响。J Am Coll Clin Pharm。2025; 7(3)。7。射线pp。chatgpt:有关背景,应用,关键挑战,偏见,道德,局限性和未来范围的全面审查。网络网络系统。2023; 3:121 - 154。https://doi.org/10.1016/ j.iotcps.2023.04.003 8。AI研究所。 语义学者。 2024 https:// www。 Spenticscholar.org/ 9。 div> 引起。 2024。https://elitic.com/10。 共识。 共识:AI搜索引擎进行研究。AI研究所。语义学者。2024 https:// www。Spenticscholar.org/ 9。 div>引起。2024。https://elitic.com/10。共识。共识:AI搜索引擎进行研究。2024 https://ssensus.app/ 11。 div>福格尔DB。与临床试验相关的因素,这些试验失败和有机会改善成功的可能性:审查。当代临床试验。2018; 11:156 - 164。https://doi.org/10.1016/j.conctc。2018.08.001 12。Lee CS,Lee Ay。 人工智能如何转化随机对照试验。 Transl vis Sci技术。 2020; 9(2):9。 https://doi.org/ 10.1167/tvst.9.2.9 13。 Weissler EH,Naumann T,Andersson T,Ranganath R,Elemento O,Luo Y等。 机器学习在临床研究中的作用:转移证据生成的未来。 试验。 2021; 22(1):537。 https://doi.org/10.1186/s13063-021-05489-x 14。 hripcsak G,Austin JH,Alderson PO,FriedmanC。使用自然语言处理来转换889,921个胸部X光学报告的数据库中的临床信息。 放射学。 2002; 224(1):157 - 163。https://doi.org/10.1148/radiol.2241011118Lee CS,Lee Ay。人工智能如何转化随机对照试验。Transl vis Sci技术。2020; 9(2):9。 https://doi.org/ 10.1167/tvst.9.2.9 13。Weissler EH,Naumann T,Andersson T,Ranganath R,Elemento O,Luo Y等。机器学习在临床研究中的作用:转移证据生成的未来。试验。2021; 22(1):537。 https://doi.org/10.1186/s13063-021-05489-x 14。hripcsak G,Austin JH,Alderson PO,FriedmanC。使用自然语言处理来转换889,921个胸部X光学报告的数据库中的临床信息。放射学。2002; 224(1):157 - 163。https://doi.org/10.1148/radiol.2241011118
感兴趣的候选人应发送由•求职信(1页)组成的单个PDF文件•简历(3页最大)•完整的出版物列表•3个参考的联系信息(其中一个应该是您的博士学位顾问)•您的PHD证书的副本。PHD必须在申请截止日期的三年内完成。•完整的“在博士后级别的奖学金申请”表格。Submit your application as a PDF marked with the name “Postdoctoral Scholarship in Medicinal Chemistry”, both in the file name and in the subject field of the email, to Marion Laudette, HYPERLINK "mailto:marion.laudette@wlab.gu.se" marion.laudette@wlab.gu.se Medicinal Chemistry”, both in the file name and in the subject field of the email, to Marion Laudette, marion.laudette@wlab.gu.se申请截止日期:2025-03-14
悉尼科技大学 (UTS) 可持续未来研究所 (ISF) 为博士生提供令人兴奋的奖学金机会,该奖学金旨在开发一种适应性强、简单、可靠且经济可行的解决方案,使用澳大利亚能源市场中的动态定价方案来管理灵活需求。所提出的解决方案旨在基于多个电力市场(包括批发、网络、FCAS 等)的各个部分以及定价和非定价信号来发挥作用。此外,该解决方案将简化消费者根据能源市场价格调整能源消费的过程,同时降低能源费用。所提出的模型将为政策制定者提供有价值的信息和建议,以最低成本解决最低需求问题。
•在学术上很强:拥有具有扎实的学术记录的相关博士学位。•研究经验:在进行研究方面表现出的经验,共轭聚合物合成和/或聚合物的物理交联经验被认为是加分。•自我激励:强烈自我驱动,具有出色的解决问题的技能,准备应对复杂的挑战。•动力和创造力:对创新充满热情,并能够在框外思考。•以细节为导向:对细节和对产生高质量工作的承诺的强烈关注。•协作:能够有效地独立工作和作为多学科团队的一部分。•有组织:出色的组织技能,能够有效地管理多个任务和项目。•出色的沟通者:具有英语的强大言语和书面沟通能力。
LUB/ARPA大学奖学金的申请过程包括填写所附的申请表(包括日期和签名),以累积的GPA提供了高中的成绩单,附加了申请人入学通知书的副本高中活动,并参与社区事业。资格标准:申请人必须是一名高中生,他居住在Lub的家庭中。选拔委员会仅考虑已在2025年4月11日发布的截止日期之前完全完成申请过程的申请人。申请过程:
进步背景计划:需要宽B细胞抗原受体(BCR)曲目才能建立对任何类型的入侵病原体的体液免疫力,例如病毒以及疫苗接种。最近的一个例子是COVID大流行,其中免疫力基于B细胞在其表面表达BCR的B细胞,以识别病毒。遇到病毒/疫苗接种后,共vid特异性B细胞将分化为分泌大量可溶性BCR的浆细胞,实际上,可以结合并消除病毒的抗体。几十年前,在小鼠中与BCR和BCR组装有关的一种称为VPREB3的多肽。但是,由于尚未发表其他研究,因此VPREB3的作用尚不清楚。我们假设组装相应受体需要VPREB3,这最终会影响BCR曲目。目的:该计划的目的是通过探索VPREB3在受体大会中的作用及其对BCR曲目的影响,为成功的候选人提供机会促进其职业生涯。方法:基于计算机的BCR/BCR的建模,具有/不带VPREB3,蛋白质印迹,免疫沉淀,共聚焦显微镜,对VPREB3 KO小鼠中BCR库的分析。时间计划:第一年,我们将努力开发所需的所有方法和知识,第二年我们将完成实验。结果:对BCR和BCR组装的了解增加,以及VPREB3在这些过程中的潜在作用。在缺乏VPREB3的条件下,确定对BCR曲目的潜在后果。此外,如果成功的话,候选人应该为他/她在学术界的未来职业发展做好准备。(请注意,奖学金是由于工作或研究以外的其他原因而建立的)
ins6tut laue-langevin Ph.d奖学金“磁成功耦合3”是FEPS 3中的Phonon耦合。该项目结合了先进的冷凝物质计算和最先进的中子散射实验,以研究分层的范德华化合物中磁性和晶体晶格振动之间的相互作用。联系人:合作。托马斯·奥尔森(Thomas Olsen)教授,dtu tolsen@fysik.dtu.dk,Andrew Wildes博士,伊利诺斯(Wildes@ill.fr)博士学位,博士提供了一个独特的机会,可以使用两种第一原理理论方法和中子散射技术在两维材料中对磁性进行尖端研究。该职位将为您提供学术界职业的理想起点,您将获得计算固态物理和最新中子散射方法的高级技能。您正式隶属于这两个机构,但将在ILL雇用并在DTU招募。该项目的主题是分层的van der waals化合物FEPS 3中的磁子和声子之间的复杂相互作用。目前,这些类型的化合物对它们可能被分层为一个原子层,类似于石墨烯。feps 3特别有趣,因为它具有本质上的磁性,可深入了解低维度中的基本磁性,并具有在基于石墨烯的技术中应用的潜力。该化合物也具有高度的磁性性,在磁性和晶体结构之间具有强耦合。该项目结合了两个主要机构的资源。理解化合物特性的关键在于晶格晶格振动(称为声子),被称为磁子(称为镁元),尤其是它们之间的相互作用。目前,这种相互作用在凝聚的物理学中对此尚不清楚。在FEPS 3中研究它们将导致对其物理特性的理解,并将作为更好地理解磁晶格耦合的基础。您将通过以第一原理计算建模为指导的非弹性中子散射实验来研究FEPS 3中的镁 - 光子相互作用。在法国短暂的整合期之后,将在项目开始(六个月)的某个时间上花费在DTU上,专注于学习和应用密度功能理论以分析磁通光谱。剩余时间(2。5年)将用于不良表现和分析中子散射实验,这将不受第一原理模拟的持续支持。因此,在整个项目期间,实验与理论之间将存在很强的相互作用。dtu是全球领先的技术大学,以其研究,教育,创新和科学建议的卓越表现。ILL是中子科学技术领先地位的国际研究中心,经营具有异常高的中子通量和约40个尖端仪器的中子来源。您将成为来自欧洲各地的充满活力和凝聚力的学生的一部分,这些学生有定期的社会和发展活动,并在法国阿尔卑斯山脚下的一个国际化城市体验生活。该项目将使您能够建立研究方向并在欧洲建立联系和合作者网络,并且是磁性和中子散射或以后的职业生涯的绝佳跳板。有关更多信息,请联系:协会。托马斯·奥尔森教授(tolsen@fysik.dtu.dk)