引用为(适当适应):迈克尔·G·伊森,阿尔贝托·帕皮,尤金·阿特,罗伯特·格·费尔德曼,乔安妮·兰利,乔安妮·兰利,李·李,伊莎贝尔·勒克斯·罗尔斯,费德里克·勒鲁克斯·罗斯,费德里克·马丁农 - 凯瑟琳·杰拉德(Catherine Gerard),劳伦斯·菲塞特(Laurence Fissette),斯特宾·泽维尔(Stebin Xavier),奥莱利·奥利维尔(AurélieOlivier),玛丽·范·德·维伦(Marie van der Wielen),多米尼克·德萨姆(Dominique Descamps),代表Aresvi-006研究小组。单剂量的呼吸综合病毒预灌注F蛋白疫苗在3个RSV季节≥60岁的成年人中的疗效。海报3391在美国波士顿,位于2024年胸部2024 - (2024年10月6日至9日)。https://events.rdmobile.com/lists/details/2538335标题:单一剂量的呼吸道合胞病毒预次疫苗F蛋白疫苗在成年人中≥60岁的成年人≥60岁的成年人≥60岁的3岁季节,3次RSV季节和介绍者: 4,Joanne M. Langley 5,Dong-Gun Lee 6,Isabel Leroux-Roels 7,Federico Martinon-Torres 8,Tino F. Schwarz 9,Richard N. van Zyl-Smit 10,Susanna Cuadripani 11,Quentin Deraedt 12,Quentin derad,Nancy Dezutter 12,Nancy Dezutter 12,Catherine Fissete 1 14 AurélieOlivier 12,Marie van der Wielen 12,Dominique Descamps 12,代表Aresvi-006研究小组会议标题:胸部感染摘要海报(F)会议类型:原始调查海报:10月8日,星期二,2024年,星期二,2024年,1:30 pm - 2:30 PM - 2:30 PM EDT搭配:1。1。贝塞斯达,医学博士,美国2。意大利费拉拉圣安娜大学医院费拉拉大学3。 美国加利福尼亚州拉古纳山的高级临床试验,美国5。 gsk,wavre,比利时13。意大利费拉拉圣安娜大学医院费拉拉大学3。美国加利福尼亚州拉古纳山的高级临床试验,美国5。gsk,wavre,比利时13。维多利亚州吉朗大学医院的Barwon Health;澳大利亚维多利亚州吉朗市迪肯大学传染病与免疫学研究中心4. 加拿大疫苗学中心,达尔豪斯大学,IWK Health和Nova Scotia Health,Halifax,加拿大6。 韩国韩国天主教大学,韩国7。 比利时根特大学和根特大学医院疫苗学中心8. 医院Clínicocommitario de Santiago,Santiago de Compostela大学,Santiago de Compostela,西班牙9。 KlinikumWürzburgMitte,校园Juliusspital,Würzburg,德国10。 开普敦大学和南非开普敦的Groote Schuur医院11。 GSK,Stevenage,Hertfordshire,英国12。 GSK,Rixensart,比利时14。 GSK,印度班加罗尔维多利亚州吉朗大学医院的Barwon Health;澳大利亚维多利亚州吉朗市迪肯大学传染病与免疫学研究中心4.加拿大疫苗学中心,达尔豪斯大学,IWK Health和Nova Scotia Health,Halifax,加拿大6。韩国韩国天主教大学,韩国7。比利时根特大学和根特大学医院疫苗学中心8. 医院Clínicocommitario de Santiago,Santiago de Compostela大学,Santiago de Compostela,西班牙9。 KlinikumWürzburgMitte,校园Juliusspital,Würzburg,德国10。 开普敦大学和南非开普敦的Groote Schuur医院11。 GSK,Stevenage,Hertfordshire,英国12。 GSK,Rixensart,比利时14。 GSK,印度班加罗尔比利时根特大学和根特大学医院疫苗学中心8.医院Clínicocommitario de Santiago,Santiago de Compostela大学,Santiago de Compostela,西班牙9。KlinikumWürzburgMitte,校园Juliusspital,Würzburg,德国10。 开普敦大学和南非开普敦的Groote Schuur医院11。 GSK,Stevenage,Hertfordshire,英国12。 GSK,Rixensart,比利时14。 GSK,印度班加罗尔KlinikumWürzburgMitte,校园Juliusspital,Würzburg,德国10。开普敦大学和南非开普敦的Groote Schuur医院11。 GSK,Stevenage,Hertfordshire,英国12。 GSK,Rixensart,比利时14。 GSK,印度班加罗尔开普敦大学和南非开普敦的Groote Schuur医院11。GSK,Stevenage,Hertfordshire,英国12。 GSK,Rixensart,比利时14。 GSK,印度班加罗尔GSK,Stevenage,Hertfordshire,英国12。GSK,Rixensart,比利时14。GSK,印度班加罗尔GSK,印度班加罗尔
DUNCAN HUNTER,加利福尼亚州,主席 CURT WELDON,宾夕法尼亚州 JOEL HEFLEY,科罗拉多州 JIM SAXTON,新泽西州 JOHN M. M C HUGH,纽约州 TERRY EVERETT,阿拉巴马州 ROSCOE G. BARTLETT,马里兰州 HOWARD P. “BUCK” M C KEON,加利福尼亚州 MAC THORNBERRY,德克萨斯州 JOHN N. HOSTETTLER,印第安纳州 WALTER B. JONES,北卡罗来纳州 JIM RYUN,堪萨斯州 JIM GIBBONS,内华达州 ROBIN HAYES,北卡罗来纳州 KEN CALVERT,加利福尼亚州 ROB SIMMONS,康涅狄格州 JO ANN DAVIS,弗吉尼亚州 W. TODD AKIN,密苏里州 J. RANDY FORBES,弗吉尼亚州 JEFF MILLER,佛罗里达州 JOE WILSON,南卡罗来纳州 FRANK A. L O BIONDO,新泽西州 JEB BRADLEY,新罕布什尔州 MICHAEL TURNER,俄亥俄州约翰·克莱恩,明尼苏达州 坎迪斯·S·米勒,密歇根州 迈克·罗杰斯,阿拉巴马州 特伦特·弗兰克斯,亚利桑那州 比尔·舒斯特,宾夕法尼亚州 塞尔玛·德雷克,弗吉尼亚州 乔·施瓦茨,密歇根州 凯茜·M·C·莫里斯,华盛顿州 迈克尔·科纳威,德克萨斯州 杰夫·戴维斯,肯塔基州
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
作者要感谢许多为本报告内容做出贡献的人,包括合同官员肖恩·伯里尔(Sean Burril);环境研究计划代表约翰·普罗莫(John Primo)和克里斯汀·斯特雷克(Kristen Strellec);承包官Paula Barksdale;以及许多Boem和NREL审稿人。我们还想认识到阿拉斯加OCS地区区域主任沙龙·兰德尔(Sharon Randall)和其他BOEM阿拉斯加工作人员支持阿拉斯加的可再生能源战略计划。我们感谢NREL的Marty Schwarz和Paul Denholm分享了他们当前项目的信息,评估了阿拉斯加铁路带网格的可再生作品集标准。我们感谢阿拉斯加海洋力量(AMP)在整个项目中的审查和反馈。我们无法解决AMP的所有评论;结果出现的任何错误都是我们自己的。We acknowledge the contribution of relevant information from concurrent projects: co-author Mariya Koleva provided information from current efforts supporting the U.S. Department of Energy's Arctic Energy Office clean hydrogen road map for Alaska, and co-author Levi Kilcher shared information from current efforts on Cook Inlet tidal development from NREL and the Alaska Center for Energy and Power.我们感谢NREL的Billy Roberts和Donna Heimiller对地图内容的贡献。编辑由NREL的Amy Brice提供。
近年来,“雷达”这一主题的范围在技术发展和应用传播方面有所扩大。主要原因是 CAD/CAE 工具可以实现更快、更可预测的设计,并且高度集成的信号处理器和后处理单元可用于过去在名义预算下无法实现的应用。测试和测量设备的相关改进促使对以前的 R&S 雷达概述应用说明 1MA127 进行更新,该说明已分为两个文档。1MA207“白皮书”描述了与 R&S 产品组合无关的一般主题。手头的这份应用说明是对“白皮书”的补充。本文档的结构现在更直接地针对目标群体。与航空航天和国防社区的工程师相比,汽车 (FM-CW) 雷达工程师最有可能对不同的主题感兴趣,即与脉冲生成和评估相关的问题。因此,A&D 主题被组织到主要章节“航空航天和国防应用”中,而汽车主题则汇集在相应的“汽车”章节中。不属于上述任何类别或对二者都很重要的主题可在“特殊雷达测量”一章中找到。我们希望通过结合白皮书和此结构,以简明扼要、条理清晰的形式向主要目标群体提供有关雷达测试与测量的信息。本应用说明最后简要概述了罗德与施瓦茨的核心雷达相关产品,并对我们的大型雷达测试与测量产品组合进行了分类。
图 1:航空电子结构的简单分解,重点介绍选定的导航系统 航空电子(航空和电子相结合的术语)应用由于其操作环境而具有非常苛刻和严格的要求。飞机航空电子组件的故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除电传操纵电子控制飞行系统外,上述分类对大多数现代飞机(包括民用和军用飞机)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨针对航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。 本应用说明的重点是突出罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户的需求,无论是
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
由于电子干扰影响了参与行动的无人机,演习的气氛被掩盖了。拉姆施泰因遗产演习于 6 月 3 日至 14 日举行,其目标之一是评估和发展北约对抗 1 类 UAS 的能力。参加演习的部队来自罗马尼亚、德国、葡萄牙、匈牙利、法国、土耳其和波兰,英国和芬兰的战斗机为演习提供支持。几家商业 C-UAS 开发商也参与其中,Echodyne、CS Group 和 Rhode & Schwarz 均受邀介绍他们的一些 C-UAS 设备。北约通信和信息局 (NCIA) 联合情报、监视和侦察中心首席科学家克里斯蒂安·科曼评论了 1 类 UAS 的威胁:“1 类 UAS 已经成为我们目前在军事冲突中观察到的最重要威胁之一。多年来,空中优势一直是北约理论的支柱之一,但我们最近发现情况已不再如此。”意大利 C-UAS 卓越中心的军官在训练演习中扮演敌军,意大利海军少校 Federico Fugazzotto 指出:“我们在这次演习中扮演红队的角色,我们是学员需要识别和应对的威胁。我们驾驶的是常见的民用无人机。” Fugazzotto 解释说,演习场景包括隐藏无人机的出发点并同时使用多个系统进行攻击,目的是测试对 UAS 攻击的准备情况,并让北约部队熟悉如何应对 1 级 UAS 在现代战争中的作用。北约部队可能会遭遇俄罗斯的干扰