文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日
Founded in 1807 in New York City by John Wiley To this day family-owned in the 7 th generation Approximately 5,000 employees worldwide Company headquarters in Hoboken (New Jersey) Wiley Online Library has 130 million users worldwide >1,700 journals, >940 society partners, >460 Nobel laureates
Hall A演讲厅A主席Hall B扬声器B主席B会议厅9--10 AM Andrea Bartolomeis教授(意大利)(9-9.15)AntipsyChotics的非规范作用机理:精神病和重新培训的相关性。Mona Rakhawy教授(9.15-9.30)理解躯体化教授Yomna Sabri教授(9.30-9.45)夜间遗传及其精神科方面的状态;埃及问答(9.45-10)的视图
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
神经结构表示是脑图或模型样结构,在结构上类似于它们所代表的内容。这些表示绝对是“认知神经科学革命”的核心,因为它们是与革命者的机械承诺兼容的唯一类型。至关重要的是,这些同样的承诺必须在神经元活性的漩涡中观察到结构表示。在这里,我认为,无论观察的时空尺度如何,我们的神经元活性中都没有观察到结构表达。我的论点首先引入了“认知神经科学革命”(第1节),并勾勒出对结构表现形式的突出,广泛采用的说法(§2)。然后,我将咨询各种在各种时空尺度上描述我们的神经元活动的报告,认为它们都没有报告存在结构表示的存在(§3)。在对我的分析(第4节)中偏转了某些直觉异议之后,我将得出结论,在没有神经结构表达的情况下,代表性和机制不能融合在一起,因此“认知神经科学革命”被迫放弃其主要承诺之一(§5)。
我们努力提供创新的解决方案,因此,我们培养了我们的跨学科专业产品部门,以利用我们作为多方面企业的优势。在我们的整个历史中,我们一直努力为客户提供最高质量的产品和服务,只有通过我们持续着重于与您这样的客户的合作伙伴关系和合作,这才有可能。
媒体报道始于公共活动,大规模对抗协作的作者分享了他们的发现,这些发现被报道为经验测试,并部分支持IIT 1-5。此消息在预印本之前直接传达给记者和公众1,2,因此在同行评审之前。这些实验似乎由不同实验室的大批学员巧妙地执行。然而,通过设计,研究仅测试了某些理论家做出的一些特质预测,这些预测与IIT 3,6,7的核心思想在逻辑上并不相关,因为其中一位作者本人也承认8。因此,这些发现并不支持该理论本身实际上经过有意义测试的说法,或者它具有“主导”,“良好的”或“领先”状态1-5,8。不幸的是,这种重要的细微差别在媒体报道1-5中丢失了。在科学界9-11中也质疑了这些主导地位的主张,但在6,8,12-16年中,IIT的支持者反复向公众广播。
人工智能科学方面的许多经典著作(主要是 Simon、Langley 及其合作者 3,但最近也有 Schmidt & Lipson、4 Udrescu & Tegmark 5 等人的作品)都集中在简单问题上。对于 Simon 和 Langley 来说,这种方法以心理学论点为前提,即科学认知本质上与常规问题解决相同,只是应用于一组不同的(有时更具挑战性的)问题。因此,他们开发了模拟人类解决问题的算法,并将其应用于科学发现。Chalmers、French 和 Hofstadter 6 批评了这种方法,因为它赋予算法一种问题的表示,而这种表示已经具有最终理论所需的基本原语。换句话说,它回避了表示问题:原语从何而来,我们如何知道我们是否拥有正确的原语?西蒙(与波普尔相反)坚持认为科学发现存在逻辑,但他的逻辑实际上是一种科学问题解决(即优化)的逻辑,而不是问题创造意义上的发现。后者涉及表征学习,但也涉及更深层次的东西,正如我在下面所论证的那样。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术