nusd:中微子分割的检测器是基于GEANT4的用户应用程序,它在不同国际合作开发的各种分段闪烁检测器中模拟逆β衰减事件。该模拟框架结合了高能量物理社区开发和使用的跨程序和库(包括Geant4,root和clhep)的组合。它将使中微子物理社区能够使用单个程序模拟和研究不同检测器概念中的中微子相互作用。除了分段探测器中的中微子模拟外,该程序还可以用于使用闪烁探测器的各种研究项目,用于不同的物理应用。
A.介电介质中闪烁偶极子排放过程的分析..................................................................................................................................................................................................................提取内部发射光谱𝑌𝑌(𝜔𝜔)和有效的偶极矩方| 𝝁𝝁 | 2 of dipole emitter .......................................................................................................... 7 C. Purcell effect in layered medium ............................................................................................ 9 II.Influence of dipole distribution on the scintillator performance ............................... 17 III.Influence of the loss of the scintillator on the Purcell factor and scintillator performance ........................................................................................................................... 18 IV.Photonic band structure calculation of one-dimensional photonic crystal .............. 20 V. Designs with realistic materials ..................................................................................... 22 VI.Influence of the fabrication error on the scintillation performance ........................ 25 VII.光电探测器的量子效率.......................................................................................................................................................................................................
3.1. 简介 19 3.2. 监测的一般原则 19 3.3. 空气或气体中氚的监测 21 3.3.1. 鼓泡器和被动采样器 21 3.3.2. 电离室方法 25 3.3.3. 比例计数器 30 3.3.4. HT-HTO 鉴别 31 3.3.5. 校准 33 3.3.6. 氚尘埃 34 3.4. 液体中氚的监测 34 3.4.1. 一般性讨论 34 3.4.2. 抓取样本 34 3.4.3. 液体闪烁计数 34 3.4.4. 闪烁流动池 35 3.5. 表面污染监测 36 3.5.1. 一般性讨论 36 3.5.2.涂片技术 37 3.6. 固体中氚的监测 37
摘要:平铺阵列使用模 2 π 相位补偿和相干光束组合来校正深湍流的影响。因此,本文使用波动光学模拟将平铺阵列的闭环性能与分支点容忍相位重构器(称为 LSPV + 7 [ Appl. Opt. 53 , 3821 (2014)])进行比较。波动光学模拟利用点源信标,并设置为从弱到强的闪烁条件。此设置可以进行权衡空间探索,以支持与 LSPV + 7 进行功率桶内比较。反过来,结果表明,在从弱闪烁条件过渡到强闪烁条件时,平铺阵列的表现优于 LSPV + 7。对于那些希望解决自适应光学中的分支点问题的人来说,这些结果既令人鼓舞又具有启发性。
在闪烁检测器中,发光材料构成了吸收辐射的活性区域,有多种具有相同特性的闪烁材料,为此,将使用Labr 3闪烁晶体。工作原理是电离辐射与令人兴奋的特定原子水平的材料相互作用,因此,当它去脱落时,会发出特征波长的光脉冲。发出的光量与撞击伽玛射线的能量成正比。用于收集光脉冲,将晶体耦合到光电层流(PMT)或光电二极管,其中光子被转换为电流。如果正确设置了检测器,则PMT阳极处的输出电流提供有关入射伽马射线的能量和时间的信息,因为响应非常快。
图1显示了我们新的四头旋转山果聚接受仪的框图(4个字母)。四轨分隔器(立方体封闭)并在彼此注册的情况下,旋转为单个固定,以包围患者的头部。每个匹配仪表仪,闪烁晶体(NAI(TL),26.0 cm x 20.8 cm x 9.0毫米),30张照片乘数管(PMTS)和前置仪。闪烁晶体是一个平面光导向,耦合到6 x 5阵列的PMT。如描绘的素图2,Special2-In。平方bialkali pmtswereutilized允许尺寸紧缩的尺寸紧凑型to虫,使用标准圆形PMT的一个具有相同效率的效果场(FOV)。探测器的边缘(死空间)的边缘仅为7.0厘米,摄像机/脑接近和大脑观察体积的启示剂,包括小脑,而没有患者的肩膀。
第 1 章 - 卫星轨道................................................................................................1 1.1 简介...................................................................................................................... 1 1.2 轨道.............................................................................................................................. 2 1.3 稳定性...................................................................................................................... 5 1.4 位置...................................................................................................................... 5 1.5 频段...................................................................................................................... 5 1.6 时间延迟...................................................................................................................... 8 1.7 地理优势............................................................................................................. 9 1.8 路径损耗...................................................................................................................... 9 1.9 太阳干扰...................................................................................................................... 11 1.10 对流层闪烁............................................................................................................. 12
第 1 章 - 卫星轨道................................................................................1 1.1 简介................................................................................................................... 1 1.2 轨道................................................................................................................... 2 1.3 稳定性................................................................................................................ 5 1.4 位置................................................................................................................ 5 1.5 频段................................................................................................................ 5 1.6 时间延迟............................................................................................................. 8 1.7 地理优势............................................................................................................. 9 1.8 路径损耗............................................................................................................. 9 1.9 太阳干扰............................................................................................................. 11 1.10 对流层闪烁................................................................................................ 12
在辐射测量值中,闪烁计数器是闪烁体和光电倍增管的组合,用作检测X-,Alpha-,beta-,Gamma-Rays和其他高能量充电颗粒的最常见和有用的设备。一个闪烁体响应输入辐射和闪光灯耦合的光电辐射管以精确的方式检测到这些闪烁的灯。在高能量物理实验中,重要的设备之一是Cherenkov计数器,其中光电倍增管检测Cherenkov辐射是由高能带电颗粒通过介电材料发出的。要准确地检测辐射,可能需要光电倍增管具有高检测效率(QE&Energy分辨率),广泛的动态范围(脉冲线性),好的时间分辨率(T.T.S.),高稳定性和可靠性,在高磁场环境或高温条件下可操作。此外,根据情况需要坚固的结构。另一方面,已经开发了几种位置敏感的光电倍增管,并用于这些测量。此目录提供了Hamamatsu光电倍增管的快速参考,特别是为闪烁计数器和Cherenkov辐射探测器设计或选择的,其中包括当前可用的大多数类型,范围从直径为3/8“至20”。应该注意的是,该目录只是描述Hamamatsu产品线的起点,因为新类型是不断开发的。请随时与我们联系您的具体要求。