摘要这项研究研究了几种玻璃成分作为伽马射线屏蔽物质的适用性。所测试的组合物具有不同的ZnO浓度,特别是(60-X)B 2 O 3 - 10NA 2 O —15SIO 2 –15SIO 2-5AL 2 O 3 - (x + 10)ZnO(其中x = 5、10、15和20 mol%)。测量以0.6642、1.1776和1.3343的能量水平进行,从CS 137和CO 60点源辐射,以及闪烁检测器[NAI(TL)]。我们研究了与γ辐射屏蔽相关的关键特性,确定有效原子数(z eff),电子密度(N EL),半价值层(HVL),线性衰减(μ)和质量衰减(μm)系数(μm)系数和平均自由路径(λ)。我们的结果表明,随着Zn浓度从15摩尔%上升到35 mol%,在检查中的眼镜从2.12至2.77 g/cm3变得更密集。此外,所有玻璃成分都提供了针对指定能级的伽马辐射的足够保护。µ的值从0.157上升到0.214 cm -1(0.6642 meV),从0.119升至0.160 cm -1(1.1776 meV),并从0.114 cm -1(1.1776 meV),从0.114 cm -1(1.3343 meV)上升到0.160 cm -1(1.1776 meV)。对于样品B1和B4,观察到的HVL值从4.41、5.84和6.12 cm降至3.21、4.31和4.61 cm,分别为0.6642、1.1736和1.3343 MEV。与经常使用的玻璃和混凝土样品相比,经过测试的材料中显示的屏蔽能力更高。该研究强调了这些玻璃成分作为可以掩盖伽马辐射的实用材料的潜力。
前言 本文试图总结和整合大量与动物营养研究中常用的实验室程序和实验技术相关的信息。它最初被设计为新墨西哥州立大学动物科学 507 营养实验室技术的补充和参考,随后修订用于西德克萨斯 A&M 大学的 AnSc 5507 动物营养研究技术。因此,本文的发展很大程度上归功于课程以及多年来教授和开发这门课程的人员。G. S. Smith 博士多年来为这门课程所做的工作值得特别表扬,多年来编写和开发程序的众多实验室技术人员也值得特别表扬。基本上,本文是作者课程笔记的大纲,并尝试在可能的情况下进行扩展和引用。许多例子都与反刍动物有关,因为作者对它们最熟悉;然而,这不应损害其对其他牲畜甚至人类营养的普遍适用性。文本可分为几个一般领域,包括实验室安全、近似分析、分光光度法、液体闪烁计数、营养研究中标记物的使用以及反刍动物的微生物学。它并不打算在每个细节上都做到完美,学生通常需要课外阅读。然而,作者希望,在未来的几年里,对于那些选择实验动物营养作为职业的学生来说,这篇文章将是一个有用的参考。最初编写于 1980 年 8 月。修订于 1982 年 7 月、1983 年 6 月、1984 年 6 月、1985 年 5 月、1986 年 5 月、1987 年 5 月、1988 年 6 月、1989 年 5 月、1990 年 5 月、1991 年 8 月、1992 年 8 月、1997 年 5 月和 2010 年 5 月。
摘要。使用数码相机和发光二极管 (LED) 信标进行了一项实验,研究了莫纳罗亚山和哈莱阿卡拉山之间 149 公里路径上的湍流。大部分路径都在海洋上,路径的一大部分位于海平面以上 3 公里。在莫纳罗亚山一侧,六个 LED 信标以大致线性阵列放置,每对间距为 7 至 62 米。从哈莱阿卡拉山一侧,一对相距 83.8 厘米的相机观察了这些信标。沿路径的湍流会引起波前倾斜,从而导致图像中的 LED 点发生位移。图像运动是由不必要的噪声源(例如相机平台运动)引起的。点之间的差分运动抵消了大部分噪声,并且这种差分运动会根据源和相机之间的几何形状以不同的方式受到沿路径湍流的加权。开发了一种相机运动不敏感的加权函数来处理这个观察问题。然后使用这些加权函数的线性组合来生成复合加权函数,该函数可以更好地抑制源和接收器附近的湍流,并且对路径越过海洋部分的湍流最为敏感。该技术用于估计此区域的湍流。所涉及的长距离导致图像中出现非常强烈的闪烁,这给数据处理带来了新的挑战。对 C 2 n 的结果估计为 4 × 10 − 17 m − 2 ∕ 3,与 Hufnagel – Valley HV5/7 模型和数值天气建模的结果高度一致。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081806]
35.1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 35.2光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 35.1.2 bacuum phototettors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 35.2.2气态光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。6 35.2.3固态光子检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 35.2.4超导光子检测器。。。。。。。。。。。。。。。。。。。。。。。。8 35.3有机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.1闪烁机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.2塑料闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。11 35.3.3有机玻璃闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.3.4液体闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.4无机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.5 Cherenkov探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 35.6气态探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 35.6.1气体中的能量损失和电荷运输。。。。。。。。。。。。。。。。。。。。22 35.6.2多线比例和漂移室。。。。。。。。。。。。。。。。。。27 35.6.3高率效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 35.6.4微图案气体探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。32 35.6.5时预测室。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。32 35.6.5时预测室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 35.6.6过渡辐射探测器(TRD)。。。。。。。。。。。。。。。。。。。。。。42 35.6.7电阻板腔室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 35.7 Lar Time投影室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.2一批超纯液体氩气。。。。。。。。。。。。。。。。。。。。。。。。52 35.7.3充电和光信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 35.7.4 Lar TPC拓扑。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 35.7.5数据采集和事件重建。 。 。 。 。 。 。 。 。 。53 35.7.4 Lar TPC拓扑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 35.7.5数据采集和事件重建。。。。。。。。。。。。。。。。。。。。57 35.7.6发展。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 35.8半导体检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 35.8.1半导体中的信号产生。。。。。。。。。。。。。。。。。。。。。。。59 35.8.2结孔检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 35.8.3带有结构化电极的检测器。。。。。。。。。。。。。。。。。。。。。。。63 35.8.4硅检测器的精确时机。。。。。。。。。。。。。。。。。。。。。。。66 35.8.5硅检测器中的辐射损伤。。。。。。。。。。。。。。。。。。。。。。68 35.9低噪声检测器读数。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>71 35.9.1主噪声起源。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.2等效噪声分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.3时序措施。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 35.9.9.4数字信号处理。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。78 35.9.5什么时候使用什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10量热计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10.1引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79
目前有几种技术可用于将 RNA 分子与其互补的 DNA 序列退火。对于某些目的,RNA 和 DNA 都可以在溶液中,1'2 但将 DNA 固定在固体或半固体基质中,4 或附着在硝酸纤维素膜过滤器上往往更方便。5 通常在用核糖核酸酶处理以去除未杂交的 RNA 后,通过对放射性 RNA 进行闪烁计数来检测杂交体。RNA 与细胞学制剂中的 DNA 的杂交应表现出高度的空间定位,因为每种 RNA 只与其互补的序列杂交。细胞学杂交技术的一般原理并不难制定。染色体或细胞核应以尽可能逼真的方式固定;碱性蛋白质应被去除,因为它们会干扰杂交过程;5 应以不丢失细胞完整性的方式变性 DNA;杂交应使用具有极高比活度的放射性 RNA,因为在给定位点杂交的分子数很少;检测应通过氚放射自显影实现最大细胞学分辨率。本文介绍了一种适用于传统南瓜制剂的细胞学杂交技术。它以蟾蜍 Xenopus 卵母细胞中 rRNA 与染色体外 rDNA 的杂交为例。1968 年 12 月,在巴西贝洛奥里藏特举行的国际核生理学和分化研讨会上提交了该技术的初步报告。材料和方法。- 细胞学杂交技术结合了琼脂柱4 和过滤方法5 的某些特点。它应该普遍适用于任何可以作为南瓜或涂片检查的材料。制备图 1 中所示的制剂时采用以下步骤。(1)将新近变态的非洲爪蟾的卵巢在乙醇-乙酸(3:1)中固定几分钟。(2)将组织转移到显微镜载玻片上的一滴 45% 乙酸中,
固态技术的进步导致硅光电塑料(SIPM)的使用增加,用于粒子物理仪器中的闪烁光检测[1]。,正在积极考虑使用SIPMS用于直接检测暗物质(例如拟议的XLZD实验[2])的实验中,并潜在地升级到Lux-Zeplin(LZ)检测器[3-5]。与光电倍增管(PMTS)相比,吸引力是显着的:放射性障碍的大小和数量更紧凑,对磁场的弹性,较低的工作电压以及自然像素化的光敏感区域,可以改善事件重建。作为一个简短的描述,SIPM是雪崩光电二极管的像素化阵列:P-n连接反向偏向于其击穿电压。当像素检测到一级光子时,所得的Geiger模式的电荷载体也会发出次级光子[6,7]。这种副作用是硅雪崩设备的通用[8]。这些二次光子本身可以通过SIPM中的不同像素检测到,因此产生了过量的,虚假的信号,这种效果称为光串扰。1因此,SIPMS的缺点是以串扰,光子检测形式的过量信号的固有产生,这种效应以设备增益非线性地缩放[10,11]。光串扰只要内部包含在原始设备中,就可以轻松地校准。在这种情况下,效果通常称为内部串扰。这被称为外部串扰。如果在检测器中仪器进行了多种s尖,则可能发生不同设备之间的串扰。因为次级光子已经逃脱了原始设备并被另一个SIPM检测到,因此校准不再直接。以这种方式,不幸的是,SIPM表现为脉冲手电筒。的确,在单个设备水平上不可能进行外部串扰的校准,并且只能由粒子探测器系统中的其他设备进行测量。
教学大纲 第一单元:通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置。 第二单元:卫星子系统:高度和轨道控制系统、TT&C 子系统、高度控制子系统、电源系统、通信子系统、卫星天线设备。 卫星链路:基本传输理论、系统噪声温度和 G/T 比、基本链路分析、干扰分析、指定 C/N 的卫星链路设计(有和没有频率重用)、链路预算。第三单元:传播效应:介绍、大气吸收、云衰减、对流层和电离层闪烁和低角度衰落、雨致衰减、雨致交叉极化干扰。多址:频分多址 (FDMA)、互调、C/N 计算。时分多址 (TDMA)、帧结构、突发结构、卫星交换 TDMA 机载处理、需求分配多址 (DAMA) – 需求分配类型、特性、CDMA 扩频传输和接收第四单元:地面站技术:发射机、接收机、天线、跟踪系统、地面接口、功率测试方法、低轨道考虑。卫星导航和全球定位系统:无线电和卫星导航、GPS 定位原理、GPS 接收机、GPS C/A 码精度、差分 GPS。 UNIT-V:卫星分组通信:通过 FDMA 传输消息:M/G/1 队列、通过 TDMA 传输消息、纯 ALOHA-卫星分组交换、时隙 Aloha、分组预留、树算法。教科书:
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他
ns cc11-(th)-p01:生物分子,酶学和仪器生物分子:生命的化学基础 - 化学键合,涉及生物分子的力和构建块 - 大分子;信息大分子。蛋白质作为信息大分子;氨基酸的化学;多肽的一级,二级和三级结构;肽;肽亚基和第四纪结构, -helix,-薄片和胶原蛋白结构,蛋白质和氨基酸的代谢。碳水化合物的化学 - 单,二糖和多糖。DNA的分子结构,替代DNA结构,圆形和超螺旋DNA,DNA的变性和恢复,DNA的物理和化学稳定性。酶和反应动力学:酶的定义;活性位点,底物,辅酶,辅因子和不同种类的酶抑制剂;酶动力学,两种底物动力学,三种底物动力学,偏离线性动力学;配体结合研究;快速动力学;关联和解离常数;在酶动力学机理分析中使用同位素; pH,温度和同位素标记的底物对酶活性的影响;酶调节的变构模型;底物诱导酶的构象变化。电子显微镜:磁性和静电镜的理论及其焦距;电子显微镜的构造;限制分辨率和有用的放大倍数;对比形成;阴影和染色技术;扫描电子显微镜;标本准备技术;电子显微镜在细胞和分子生物学中的应用;嵌入和切割。仪器:生物系统光谱后的原理和应用:吸收光谱(UV-可见),荧光和磷光,圆形二色性(CD),红外光谱学(IR),共振拉曼光谱;电子旋转共振(ESR),液体闪烁计数器; pH计;超速离心,光学显微镜,光学显微镜;阶段,紫外线和干扰显微镜 - 其基本原理;光学系统和射线图 - 它们在细胞生物学中的应用;荧光显微镜;细胞和组织的微光照射法,荧光活化的细胞分辨率(FACS)。
用于定向能和自由空间光通信应用的激光束在通过大气传播时可能会因光学湍流而严重扭曲。这些扭曲主要源于大气边界层,该边界层通常延伸至约 2 公里高,包含大气质量的 75%。其影响包括光束偏移、光束增宽和辐照度波动。自适应光学技术的使用可以减轻湍流的影响,此类系统在天文应用中广为人知,但在定向能应用中的实现和性能仍然不太为人所知。任何自适应光学系统的目标都是通过使用波前传感器测量误差、计算适当的校正并将此校正应用于可变形镜来消除光路变化导致的光波前扭曲。为了满足时间带宽要求,该反馈回路每秒执行数百次。要确定自适应光学系统的特性,必须模拟大气湍流对波前的影响。激光系统性能的评估取决于传播预测代码中使用的大气模型的精度。经过几十年的研究,一些分析理论例如几何光学 1 、Rytov方法和马尔可夫近似 2-4 已经发展起来,用于计算激光束传播的特性。但这些方法在某些条件下是近似的,因此它们的适用性有限,并且闪烁统计数据的理论计算非常困难,特别是当强度波动变大时。因此,开发了数值方法来更真实地表示大气湍流对激光束传播的影响。这些方法被称为光束传播方法 5 。这些方法的其他名称是分步傅里叶技术 6 和随机相位屏方法 7,8 。这里我们介绍激光束传播代码 LAtmoSim,它使我们能够评估大气对激光束波前的影响,并通过使用上述方法确定 AO 系统的设计参数。在本文中,我们还介绍了预测大气湍流强度的工作成果。光学湍流强度的定量测量称为折射率结构参数 C n
