2008 年至今 德克萨斯 A&M 大学生态与保护生物学系 (2020 年至今) 和生态系统科学与管理系 (2008-2019) 教授 2016 年至今 德克萨斯 A&M 大学能源研究所附属教员 2018 年 (春季) 新西兰 Scion (皇家研究所) 访问科学家 2011-2012 耶鲁大学林业与环境研究学院访问学者 2008-2011 德克萨斯 A&M 大学生态系统科学与管理系研究生项目 (2009-2011) 和本科项目 (2008-2009) 副系主任 2001-2008 德克萨斯 A&M 大学生态系统科学与管理系副教授,农业经济学联合任命 1992-2001 教员(助理教授,1992-1997; 1997-1999;教授(1999-2001),塔斯基吉大学森林资源与农业经济项目联合聘任 1998-2001 塔斯基吉大学森林资源项目协调员 1992-2001 塔斯基吉大学国际项目开发协调员
116 试剂和酶。除非另有说明,试剂和酶均从 Sigma-Aldrich(英国)购买。碳网格(400 平方目铜)从 Micro to Nano(荷兰)购买,醋酸铀酰溶液由巴塞罗那自治大学的显微镜服务部门提供。Sup35- 121 SAC 肽从 CASLO ApS(Scion 丹麦技术大学)购买。122 蛋白质的表达和纯化。克隆到带有 His6 标签的质粒 pET28(a) 中的 Sup35- 123 5aa-DHFR 的 cDNA 是从 GenScript 获得的。通过在 128 质粒 pET28(a)/Sup35-5aa-DHFR 上进行诱变,获得了构建体 pET28(a)/Sup35-8aa- 126 DHFR、pET28(a)/野生型 DHFR (DHFR-wt) 和 pET28(a)/ 127 Sup35-5aa-DHFR-Z。用相应的质粒转化大肠杆菌 BL21 (DE3)- 129 感受态细胞。130 然后,将转化细胞在 10 mL 溶源性肉汤 (LB) 中培养
我们的人民和研究组合森林种植者研究(FGR)是一家行业拥有的公司,可管理和促进新西兰森林领域的福利研究和发展。我们以两种主要方式进行此操作:•在森林种植者征收信托(FGLT)研究投资组合中进行研究。tis钱直接来自森林种植者,以收获的木材征收的形式•许多林业研究计划还获得了森林征收的资金和支持,包括主要的政府和行业资金,例如:•政府/行业伙伴关系 - 我们与商业,创新和就业部(MBIE)和森林公司(MBIE)和其他林业公司(MBI)(MBIE)(MBIE)(MMPI)(MPI)(MMPI)合作•通常通过实物贡献间接。FGR目前直接管理了三个多年,数百万美元的政府/行业伙伴关系,以及由FGR的主要研究提供商之一Scion管理的监督计划。
葫芦科作物是研究园艺植物长距离信号传导的合适模型。尽管数千种物质可通过嫁接传递到葫芦科植物中,但由于缺乏有效的遗传转化系统,功能研究受到了阻碍。本文,我们报告了一种方便有效的几种葫芦科作物根部转化方法,该方法将有助于研究功能基因和茎-根串扰。我们在 6 周内获得了根部完全转化和非转基因茎部的健康植物。此外,我们将这种根部转化方法与嫁接相结合,从而可以在砧木中进行基因操作。我们通过使用黄瓜 (Cucumis sativus)/南瓜 (Cucurbita moschata Duch.)(接穗/砧木)嫁接探索耐盐机制来验证我们的系统,其中在南瓜砧木中编辑了钠转运蛋白基因高亲和力 K + 转运蛋白 1 (CmoHKT1;1),并通过在黄瓜根中过度表达南瓜液泡膜 Na + /H + 反向转运蛋白基因钠氢交换器 4 (CmoNHX4)。
有了正确的政策和投资环境,促进国内 SAF 生产将成为可能,并且可以缩小与化石燃料之间的商业差距,正如加利福尼亚州所证明的那样,该州和联邦的政策措施已将差距缩小到化石燃料价格的两倍以下。SAF 联盟(新西兰航空、Z Energy、Scion、LanzaTech 和 LanzaJet)进行的分析表明,新西兰有一条途径可以建立国内 SAF 行业,到 2050 年,在国内原料(原材料)供应链的支持下,满足新西兰 50% 的航空燃料需求。新西兰航空与商业、创新和就业部 (MBIE) 之间的合作伙伴关系目前正在进一步考虑新西兰国内 SAF 生产的可行性。任何国内 SAF 生产都可能需要通过“登记和认领”处理的离岸和新兴全球交易平台进口的 SAF 来补充。在没有国内 SAF 生产的情况下,需要建立安全且可持续的 SAF 进口供应链。
1L,第一线; ADC,抗体 - 药物结合; AE,不利事件; BICR,盲目的独立中央审查; DCR,疾病控制率; DOR,响应持续时间; DV,disitamab vedotin;心电图,心电图; ECOG,东部合作肿瘤学小组; EORTC QLQ-C30,欧洲研究和治疗癌症核心生活质量问卷的组织; IHC,免疫组织化学; ish,原位杂交; HER2,人表皮生长因子受体2; Her2+,Her2阳性;洛杉矶,当地高级; LVEF,左心室射血分数; m;转移MOS,总体生存中位数; mmae,单甲基auristatin e; MPF,中值无进展生存期; ORR,客观响应率; OS,整体生存; PD-(L)1,编程配体1/细胞死亡蛋白1; PFS,无进展的生存;质量,生活质量; R,随机化; Recist V1.1,实体瘤的响应评估标准,版本1.1; UC,尿路上皮癌。致谢作者感谢患者,他们的家人,所有其他调查人员以及参与本研究的所有调查现场成员。这项研究是由Seagen赞助的,Seagen于2023年12月被辉瑞公司(Pfizer)和美国新泽西州Rahway的Merck&Co.,Inc。的子公司Merck Sharp&Dohme Llc赞助。在作者指导下的写作和社论支持是由Scion(英国伦敦Prime)的Jessica Men,Pharmd和Sinead Stewart提供的。Prime提供的写作和编辑支持由Seagen Inc.披露
气候变化给葡萄栽培带来了许多威胁。人们已经制定了不同的策略来减轻这些影响,从创新的葡萄园管理方法和精准葡萄栽培到培育更适应环境挑战的新品种和砧木。表观遗传学是指基因组功能的可遗传变化,不受 DNA 序列变异的影响。最近发现表观遗传记忆可以介导植物对环境的适应和适应,这为应对气候变化的植物改良提供了新的杠杆,而不会对遗传信息产生重大影响。这可以通过使用压力的表观遗传记忆和/或通过在不改变遗传信息的情况下以新的表观等位基因的形式创造表观遗传多样性来实现。事实上,葡萄藤是一种多年生嫁接克隆繁殖植物,因此具有表观遗传特异性。这些特异性需要已经在模型植物中开发的适应策略,但也提供了探索表观遗传记忆和多样性如何成为具有类似特性的植物快速适应环境的主要来源的机会。在这些策略中,使用不同类型的诱导剂进行一年一次和一年一次的植物启动可能提供有效的方式来更好地应对(非)生物胁迫。利用接穗和砧木之间的表观遗传交换和/或在基因组范围内创造非靶向表观遗传变异,或使用表观遗传编辑进行靶向变异,可能为葡萄树改良提供创新且有希望的途径,以应对气候变化带来的挑战。
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。
缺水应激是影响植物(尤其是葡萄藤的生理和生长反应)最常见的环境压力之一。然而,葡萄藤品种和物种在对水胁迫的耐受性方面有所不同。为了识别最宽容的葡萄茎,使用了两个因子的阶乘随机块设计。第一个因素包括易感简历。Sultana(V。Vinifera L.)接枝移植到三个砧木(Yaghouti,Kolahdari和140 Ru)上,第二个因素是三个水平的水应力潜力(对照,-1 MPA和-2 MPA)。研究了生理参数,例如丙二醛(MDA),电泄漏(EL),脯氨酸,可溶性糖,蛋白质,光合色素和抗氧化剂。我们的结果表明,增加的水应力增强了H 2 O 2,MDA,EL,脯氨酸,可溶性糖和可溶性蛋白,同时减少叶绿素(CHL)和类胡萝卜素含量,生长参数和植物干重。谷胱甘肽过氧化物酶(GPX)的活性响应缺水而增强,而过氧化杀起酶(CAT)和抗坏血酸酯过氧化物酶(APX)酶在-1 MPa时表现出较高的活性,然后在最低水位(-2 MPA)下降低。此外,暴露于水胁迫的140个RU砧木具有较低水平的MDA,H 2 O 2和EL,更高的Chl(A,B),类胡萝卜素,APX和GPX活性以及较高的芽干重。总体而言,这三个砧木的生理和形态反应提出,将商业苏丹娜品种嫁接到耐旱的砧木上,例如140 RU,是提高干旱胁迫耐受性的有效策略。
1。脱碳枢纽:包括氢网络托马斯·高(Thomas Gao)的动力 - 新南威尔士州脱碳创新中心2。通过离子 - 植入型纳米催化表面用于电催化氢进化Niall Malone - GNS Science/Auckland University of Auckland 3.开发光射流和概念验证的光电化学细胞,用于绿色氢生产Glen McClea - 坎特伯雷大学4。泰坦酸盐光催化剂/聚氨酯泡沫复合材料,用于通过玉米stover yitbarek fitwi fitwi kidane的照片发酵,可容纳生物氢化,yitbarek fitwi kidane - myongji University 5。PT单原子Emily Wong上的氢进化 - 惠灵顿维多利亚大学6。生物氢和生物甲烷的生产,可溶性木糖Suren Wijeyekoon博士 - Scion 7。使用水泥作为化学循环生物量蒸汽气化氢生产Xueqi Zhang的化学循环生物量蒸汽气化时的基于铁矿石的氧载体颗粒 - 坎特伯雷大学8。确定质子交换的物理降解与电压衰减之间的关系niFep x电催化剂:电气合成,电激活和光催化中的应用Chia-yu lin - 国立郑项大学10。催化剂纳米颗粒的溶解和变高的中尺度模型Giovanna Bucci - Lawrence Livermore国家实验室11.直接海水分裂中的OER催化剂的有效LDH材料Chang Wu博士 - 坎特伯雷大学12。映射氧气进化过程中的纳米泡成核rizki putri andarini - 惠灵顿维多利亚大学13。TIO 2中的工程缺陷,用于同时生产氢和有机产品Jiajun Zhang - 新南威尔士大学