为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
碱基编辑器是 RNA 引导的脱氨酶,可实现位点特异性核苷酸转换。这些 Cas 脱氨酶融合蛋白的靶向范围主要取决于靶基因座处原间隔区相邻基序 (PAM) 的可用性,并且仅限于 CRISPR-Cas R 环内的窗口,其中单链 DNA (ssDNA) 可供脱氨酶接触。在这里,我们推断 Cas9-HNH 核酸酶结构域在空间上限制了 ssDNA 的可及性,并证明省略该结构域会扩大编辑窗口。通过将 HNH 核酸酶结构域与单体或异二聚体腺苷脱氨酶交换,我们还设计了具有 PAM 近端移位编辑窗口的腺嘌呤碱基编辑器变体 (HNHx-ABE)。这项工作扩展了碱基编辑器的靶向范围,并提供了明显更小的碱基编辑器变体。此外,它还提供了 Cas9 蛋白质工程的未来潜在方向,其中 HNH 结构域可以被作用于 ssDNA 的其他酶取代。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
在多个量子位上表现出显着的时间和空间相关性的噪声可能对易于断层的量子计算和量子增强的计量学尤其有害。然而,到目前为止,尚未报道对即使是两数量子系统的噪声环境的完整频谱表征。我们提出并在实验上证明了基于连续控制调制的两量偏角噪声光谱的方案。通过将自旋锁定松弛度的思想与统计动机的稳健估计方法相结合,我们的协议允许同时重建所有单量和两倍的互相关光谱,包括访问其独特的非分类特征。仅采用单一QUIT控制操作和状态训练测量,而不需要纠缠状态的准备或读取两量点的可观察物。我们的实验演示使用了两个与共享的彩色工程噪声源相连的超导码位,但我们的方法可移植到各种dephasing主导的Qubit架构上。通过将量子噪声光谱推向单量环境,我们的工作预示着工程和自然发生的噪声环境中时空相关的特征。
1。食品标准机构,进一步的Kinder产品在2022年5月9日爆发沙门氏菌后召回。https://www.food.gov.uk/news-alerts/news/news/efore-kinder-products-products-products-recalled-following-following-an- and an-爆发 - 爆发2。ESHA研究,安全价格:了解食物回忆的真实成本,2023年2月24日。https://esha.com/blog/true-cost-cost-cost-ost-of-a-food-- remebood--回忆/#:〜:text = as%20A%20A%20 result%2c%20%20%20%20%20%,尽管%2C%20do 20do 20do 20do tode dive < Bartlett A,Padfield D,Lear L等。 全面的细菌病原体感染了人类。 微生物学168。DOI:10.1099/MIC.0.001269(2022)4。 Demirev PA,Ho Y-P,Ryzhov V,Fenselau C.(1999)通过质谱和蛋白质数据库搜索鉴定微生物。 肛门。 化学。 71,2732–2738。 5。 CuénodA,Aerni M,Bagutti C.等。 ESGMD研究小组,常规诊断中MALDI-TOF质谱的质量:来自国际外部质量评估的结果,包括Bartlett A,Padfield D,Lear L等。全面的细菌病原体感染了人类。微生物学168。DOI:10.1099/MIC.0.001269(2022)4。Demirev PA,Ho Y-P,Ryzhov V,Fenselau C.(1999)通过质谱和蛋白质数据库搜索鉴定微生物。肛门。化学。71,2732–2738。5。CuénodA,Aerni M,Bagutti C.等。 ESGMD研究小组,常规诊断中MALDI-TOF质谱的质量:来自国际外部质量评估的结果,包括CuénodA,Aerni M,Bagutti C.等。ESGMD研究小组,常规诊断中MALDI-TOF质谱的质量:来自国际外部质量评估的结果,包括
单层石墨烯(SLG)(Novoselov等,2004)可以使用显微镜(如果放置在Si+SiO 2厚度100 nm或300 nm上)(Casiraghi等,2007a)。SIO 2层充当光的腔,并根据其厚度导致建设性或破坏性干扰(Casiraghi等,2007a)。图1显示了计算出的光学对比度作为激光波长和SIO 2厚度的函数,对比度最大值在100和300 nm厚度,对于450至600 nm之间的常用激光波长。虽然通过光学对比进行成像可以使其厚度有一个了解,但它不足以获取更多的定量信息,例如掺杂,混乱,应变等。拉曼光谱镜通常是一种强大的特征技术,通常是碳,范围从富勒烯,纳米管,石墨碳到无定形和类似钻石的碳(Ferrari and Robertson,2000; Tuinsstra and Koenig and Koenig,1970; 1970; Fresselhaus et al。在石墨烯中,拉曼光谱现在可以通常用于提取层n的层数,以估计掺杂和应变的类型和数量,以及检查石墨烯的质量,因为这种光谱技术对缺陷也很敏感(Ferrari和Basko,2013年)。
Farrar,史蒂夫。 “空间的景象是通用吸引力。”剑桥晚报,1996年9月25日,第1页。 8。Farrar,史蒂夫。“空间的景象是通用吸引力。”剑桥晚报,1996年9月25日,第1页。 8。
摘要:我们在液态氦气温度(T = 2 K)上进行激光光谱,以研究用氢化动力学滴注制造的纳米镜高度的蒽晶体中的掺杂的单二苯甲烷(DBT)分子。使用高分辨率的荧光激发光谱法,我们表明,印刷纳米晶体中单分子的零子线几乎与对散装中同一来宾 - 宿主系统观察到的傅立叶限制过渡一样狭窄。此外,光谱不稳定性可与或小于一个线宽度相当。通过记录DBT分子的超分辨率图像并改变激发梁的极化,我们确定印刷晶体的尺寸和晶体轴的方向。对于一系列应用,有机纳米和微晶的电水动力印刷是感兴趣的,其中希望对具有狭窄光学转变的量子发射器进行对照定位。关键字:纳米折线,纳米晶,量子发射极,单分子,单光子源,光谱M
o 能够设计和实施实验或理论程序来解决学术和工业研究中的问题或改进现有结果 o 能够使用分析和数值数学计算工具 o 学生能够将物理理论应用于分子系统/晶体/生物分子/材料,了解使用计算机模拟分子系统动态的现代方法 软技能 ● 做出明智的判断和选择 o 能够以越来越高的自主性水平工作,包括承担项目规划和管理设施的责任 o 鼓励学生为提出的问题选择个人解决方案,并提出有趣的研究案例,这些案例可以作为考试面试的重要部分。 ● 交流知识和理解 o 能够使用意大利语和英语在物理学的高级领域进行交流 o 懂得如何揭示案例研究的特殊性并提出解决技术,鼓励在课堂上进行讨论 ● 继续学习的能力 o 掌握持续学习和知识更新的基本知识工具 o 知道如何从正式文本中提取真实案例研究的操作信息,使用计算机代码、高级数学技术、人工智能 教学大纲 内容知识 分子建模:经典分子动力学。分子中电子的量子处理。