摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
临床前扰动筛选,其中在疾病模型上系统地测试了遗传,化学或环境扰动的影响,由于其规模和因果性质,对机器学习增强的药物发现具有巨大的希望。预测模型可以根据分子特征来推断以前未经测试的疾病模型的扰动反应。这些在计算机标签中可以扩展数据库并指导实验优先级。但是,对扰动特异性效应进行建模并在各种生物环境中产生健壮的预测性能仍然难以捉摸。我们介绍了LEAP(自动编码器和预测变量的分层集合),这是一个新颖的集合框架,可改善稳健性和概括。LEAP利用多个Damae(数据增强蒙版的自动编码器)表示和套索回归器。通过结合从不同随机初始化中学到的多种基因表达表示模型,在预测未见细胞系,组织和疾病模型中基因本质或药物反应方面始终胜过最先进的方法。值得注意的是,我们的结果表明,结合表示模型而不是仅预测模型会产生出色的预测性能。超出其性能增长,LEAP在计算上是有效的,需要最小的高参数调整,因此很容易将其纳入药物发现管道中,以优先考虑有希望的目标并支持生物标志物驱动的分层。这项工作中使用的代码和数据集可公开使用。
单萜因其作为口味,香料,杀虫剂和能量浓厚的燃料而受到重视。微生物生物合成为这些重要分子提供可持续的生物合成途径,但生产水平仍然有限。在这里,我们引入了一种生物传感器驱动的微生物工程策略,以增强单类药物的产生,特别是针对Geraniol。使用Pyr1受体的诱变库(带有可延展结合口袋的植物ABA信号通路的多功能生物传感器),我们筛选了24个单键型,并鉴定出对八种响应于八种的Pyr1变体,包括Geraniol。在耐热酵母kluyveromyces Marxianus中表达了低背景,高度选择性的geraniol敏感的Pyr1变体,作为一种基于生长的生物传感器电路,从而可以快速应变工程。通过将geraniol敏感的Pyr1传感器与全基因组CRISPR-CAS9诱变方法耦合,我们确定了六个基因敲除,可增强香精醇的产生,从而增加了2倍的滴度。这项研究证明了PYR1生物传感器平台可以使快速应变工程和改善所需代谢物滴度的突变体的鉴定。
Gaurav Kumar Pandey、1,4,6,7 Nick Landman、1,4,7 Hannah K. Neikes、2,4 Danielle Hulsman、1 Cor Lieftink、3 Roderick Beijersbergen、3 Krishna Kalyan Kolluri、5 Sam M. Janes、5 Michiel Vermeulen、2,4 Jitendra Badhai、1,4,8、* 和 Maarten van Lohuizen 1,4,8,9, * 1 荷兰癌症研究所分子遗传学部,Plesmanlaan 121, 1066CX 阿姆斯特丹,荷兰 2 奈梅亨内梅亨大学理学院分子生物学系,奈梅亨,荷兰 3 分子癌发生部,NKI 机器人和筛查中心,荷兰癌症研究所,荷兰阿姆斯特丹 4 Oncode 研究所,乌得勒支,荷兰 5 伦敦大学学院呼吸科肺活体研究中心,伦敦大学学院,雷恩大厦,伦敦,英国 6 现地址:印度瓦拉纳西 221005 贝拿勒斯印度教大学动物学系 7 以下作者贡献相同 8 资深作者 9 主要联系人 *通信地址:j.badhai@nki.nl (JB),mvlohuizen@nki.nl (MvL) https://doi.org/10.1016/j.xcrm.2022.100915
ARS-COV-2是冠状病毒疾病2019(COVID-19)大流行的病因学药。SARS-COV-2是在2002 - 2003年SARS-COV-1之后的第21世纪越过物种障碍的第三个高度致病性冠状病毒(参考文献。1 - 3)和2012年的MERS-COV(参考4)。已知另外四个HCOV(HCOV-229E,HCOV-NL63,HCOV-OC43和HCOV-HKU1)在人类的季节性循环中循环,大约有三分之一的常见冷感染感染5。像SARS-COV-1和HCOV-NL63一样,SARS-COV-2进入靶细胞的进入是由血管紧张素转化酶2(ACE2)受体6-10介导的。SARS-COV-1和SARS-COV-2使用细胞丝氨酸蛋白酶跨膜蛋白酶丝氨酸2(TMPRSS2)用于质膜6,11的尖峰蛋白启动。组织蛋白酶还参与SARS-COV峰蛋白裂解和融合肽暴露于进入时(参考文献。12 - 15)。已经报道了几个用于鉴定冠状病毒调节剂的全基因组KO CRISPR屏幕16 - 21。这些屏幕使用肾脏起源的自然允许的Simian Vero E6细胞20;肝脏起源的人类HuH7细胞(或衍生物)(非定位表达ACE2和TMPRSS2)16、18、19;和A549肺部的细胞,异位表达ACE2 17,21。在这里,我们进行了全基因组,功能丧失的CRISPR KO屏幕和功能获得的CRISPRA屏幕,包括生理学上
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月12日。 https://doi.org/10.1101/2025.02.11.637716 doi:Biorxiv Preprint
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
基因组学的最新进展揭示了微生物生态系统的多样性和丰富性。现在需要新的功能基因组学方法来高通量地探测基因功能并提供机制见解。在这里,我们回顾了如何使用 CRISPR 工具箱以序列特异性的方式灭活、抑制或过度表达基因,以及这如何提供多种有吸引力的解决方案来高通量地识别基因功能。CRISPR 筛选技术在真核生物和原核生物中都得到了发展,已经为微生物学和宿主-病原体相互作用提供了有意义的见解。在微生物组时代,CRISPR 衍生工具的多功能性和功能多样性有可能显著提高我们对微生物群落及其与宿主相互作用的理解。
Claire Sayers,1、2、3 Vikash Pandey,1、2 Arjun Balakrishnan,1、2 Katharine Michie,4 Dennis Svedberg,5、7 Mirjam Hunziker,1、2 Mercedes Pardo,6 Jyoti Choudhary,6 Ronnie Berntsson,5、7 和 Oliver Billker 1、2、8、* 1 瑞典分子感染医学实验室,于默奥大学,于默奥,瑞典 2 于默奥大学分子生物学系,于默奥,瑞典 3 新南威尔士大学生物医学学院,悉尼,新南威尔士州,澳大利亚 4 新南威尔士大学 Mark Wainwright 分析中心,悉尼,新南威尔士州,澳大利亚 5 于默奥大学医学生物化学和生物物理学系,于默奥,瑞典 6 癌症研究所研究,英国伦敦 Chester Beatty 实验室 7 瑞典于默奥大学瓦伦堡分子医学中心 8 主要联系人 *通信地址:oliver.billker@umu.se https://doi.org/10.1016/j.cels.2024.10.008
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 11 月 19 日发布了此版本。;https://doi.org/10.1101/2024.11.19.624352 doi:bioRxiv 预印本