。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2023 年 7 月 12 日发布。;https://doi.org/10.1101/2023.07.12.548736 doi:bioRxiv 预印本
大脑可以说是人体最复杂的部分形式和功能。对调节其正常生理和病理生理的分子机制尚不清楚。缺乏知识在很大程度上源于人脑的无法访问的本质以及动物模型的局限性。因此,脑部疾病很难理解,甚至更难治疗。产生人类多能干细胞(HPSC)衍生的二维(2D)和3维(3D)神经培养的最新进展提供了一个可访问的系统来模拟人脑。基因编辑技术(例如CRISPR/CAS9)的突破将HPSC进一步提升到了可遗传障碍的实验系统中。强大的遗传筛选,以前保留用于模型生物和转化的细胞系,现在可以在人神经细胞中进行。结合了快速扩展的单细胞基因组学工具包,这些技术进步最终创造了使用功能基因组学研究人脑前所未有的机会。本综述将总结在HPSCS衍生的2D神经培养物和3D脑器官中应用基于CRISPR的遗传筛查的目前进展。我们还将评估所涉及的关键技术,并讨论其相关的实验考虑和未来应用。
利益声明 ATS 是 Immunai 的科学创始人和 Cartography Biosciences 的创始人,并从 Arsenal Biosciences、Allogene Therapeutics 和 Merck Research Laboratories 获得研究资助。JAB 是 Immunai 的顾问。SAV 是 Immunai 的顾问。KEY 是 Cartography Biosciences 的顾问。CLM 是 Lyell Immunopharma 和 Syncopation Life Sciences 的联合创始人,并为 Lyell、Syncopation、NeoImmune Tech、Apricity、Nektar、Immatics、Mammoth 和 Ensoma 提供咨询。AA 是 Tango Therapeutics、Azkarra Therapeutics、Ovibio Corporation 和 Kytarro 的联合创始人;SPARC、Bluestar、ProLynx、Earli、Cura、GenVivo、Ambagon、Phoenix Molecular Designs 和 GSK 的顾问;Genentech、GLAdiator、Circle 和 Cambridge Science Corporation 的 SAB 成员;获得 SPARC 和阿斯利康的研究支持;持有与阿斯利康共同持有的 PARP 抑制剂使用专利。AM 是 Spotlight Therapeutics、Arsenal Biosciences 和 Survey Genomics 的联合创始人。AM 是 NewLimit 的科学顾问委员会成员。AM 拥有 Arsenal Biosciences、Spotlight Therapeutics、NewLimit、Survey Genomics、PACT Pharma 和 Merck 的股份。AM 曾从 23andMe、PACT Pharma、Juno Therapeutics、Trizell、Vertex、Merck、Amgen、Genentech、AlphaSights、Rupert Case Management、Bernstein 和 ALDA 收取费用。AM 是 Offline Ventures 的投资者和非正式顾问,也是 EPIQ 的客户。Marson 实验室曾从 Juno Therapeutics、Epinomics、Sanofi、GlaxoSmithKline、Gilead 和 Anthem 获得研究支持。 KAF、ES、JC、AA、AM 和 CLM 在 CAR-T 细胞治疗领域拥有专利。JAB 和 ATS 已提交与本研究内容相关的专利。
利益声明 ATS 是 Immunai 的科学创始人和 Cartography Biosciences 的创始人,并从 Arsenal Biosciences、Allogene Therapeutics 和 Merck Research Laboratories 获得研究资助。JAB 是 Immunai 的顾问。SAV 是 Immunai 的顾问。KEY 是 Cartography Biosciences 的顾问。CLM 是 Lyell Immunopharma 和 Syncopation Life Sciences 的联合创始人,并为 Lyell、Syncopation、NeoImmune Tech、Apricity、Nektar、Immatics、Mammoth 和 Ensoma 提供咨询。AA 是 Tango Therapeutics、Azkarra Therapeutics、Ovibio Corporation 和 Kytarro 的联合创始人;SPARC、Bluestar、ProLynx、Earli、Cura、GenVivo、Ambagon、Phoenix Molecular Designs 和 GSK 的顾问;Genentech、GLAdiator、Circle 和 Cambridge Science Corporation 的 SAB 成员;获得 SPARC 和阿斯利康的研究支持;持有与阿斯利康共同持有的 PARP 抑制剂使用专利。AM 是 Spotlight Therapeutics、Arsenal Biosciences 和 Survey Genomics 的联合创始人。AM 是 NewLimit 的科学顾问委员会成员。AM 拥有 Arsenal Biosciences、Spotlight Therapeutics、NewLimit、Survey Genomics、PACT Pharma 和 Merck 的股份。AM 曾从 23andMe、PACT Pharma、Juno Therapeutics、Trizell、Vertex、Merck、Amgen、Genentech、AlphaSights、Rupert Case Management、Bernstein 和 ALDA 收取费用。AM 是 Offline Ventures 的投资者和非正式顾问,也是 EPIQ 的客户。Marson 实验室曾从 Juno Therapeutics、Epinomics、Sanofi、GlaxoSmithKline、Gilead 和 Anthem 获得研究支持。 KAF、ES、JC、AA、AM 和 CLM 在 CAR-T 细胞治疗领域拥有专利。JAB 和 ATS 已提交与本研究内容相关的专利。
105,也可根据 CC0 许可证使用。(未经同行评审认证)是作者/资助者。本文是美国政府作品。根据 17 USC,它不受版权保护
摘要 弥漫性大 B 细胞淋巴瘤 (DLBCL) 是最常见的侵袭性淋巴系统恶性肿瘤,是一种高度异质性的疾病。在本研究中,我们进行了全基因组和转录组测序以及全基因组 CRISPR-Cas9 敲除筛选,以研究活化的 B 细胞样 DLBCL 细胞系 (RC-K8)。我们在 RC-K8 中发现了一种独特的遗传必需性模式,包括对 CREBBP 和 MDM2 的依赖性。对 CREBBP 的依赖性与涉及 EP300 的平衡易位有关,这导致蛋白质的截短形式缺乏关键的组蛋白乙酰转移酶 (HAT) 结构域。CREBBP 和 EP300 基因(B 细胞淋巴瘤中两个经常突变的表观遗传调节剂)之间的合成致死相互作用在之前发表的 CRISPR-Cas9 筛选和抑制剂测定中得到了进一步验证。我们的研究表明,将无偏功能筛选结果与基因组和转录组数据相结合,可以识别 DLBCL 中常见和独特的可用药物弱点,并且组蛋白乙酰转移酶抑制可以成为 CREBBP 或 EP300 突变病例的治疗选择。
✉函数和材料请求应发给迈克尔·C·巴西克(Michael C. Bassik)。bassik@stanford.edu。作者贡献R.A.K.和M.C.B.构思并设计了这项研究。R.A.K. 为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。 R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.为全基因组CRISPR筛选设计了癌症 - 巨噬细胞共培养系统。R.A.K. 在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。 和K.S.和B.M. 在KARPAS-299细胞中进行了CRISPR屏幕。 Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.在S.L.的帮助下,在Ramos细胞和J774细胞中进行了CRISPR屏幕。和K.S.和B.M.在KARPAS-299细胞中进行了CRISPR屏幕。Y.N. 在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。 a.m.m. 和A.A.B. 通过I.L.W.的建议进行了合成小鼠实验。 和F.V.-C。 D.F. 生成了APMAP同源模型。 J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。Y.N.在J.S.的建议下,在NSG小鼠中进行了体内小鼠实验。a.m.m.和A.A.B.通过I.L.W.的建议进行了合成小鼠实验。和F.V.-C。 D.F.生成了APMAP同源模型。J.A.S. 在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。 L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。J.A.S.在C.C.的建议下分析了不同癌症类型中差异表达的TCGA数据。L.J.-A. 分析了单细胞RNA-sequering数据。 R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。L.J.-A.分析了单细胞RNA-sequering数据。R.A.K. 和M.G. 进行了incucyte分析以验证CRISPR淘汰赛。 R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和M.G.进行了incucyte分析以验证CRISPR淘汰赛。R.A.K,M.G。 和S.L. 克隆的sgrna载体和产生的基因敲除细胞系。 R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K,M.G。和S.L.克隆的sgrna载体和产生的基因敲除细胞系。R.A.K. 进行了蛋白质印迹,共聚焦显微镜和药物滴定。 M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.进行了蛋白质印迹,共聚焦显微镜和药物滴定。M.G.,S.L。 和R.A.K. 进行了流式细胞仪分析。 R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。M.G.,S.L。和R.A.K.进行了流式细胞仪分析。R.A.K. 和S.L. 执行了RNA-sequest,D.Y. 和K.L. 分析了RNA测序数据。 D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。R.A.K.和S.L.执行了RNA-sequest,D.Y.和K.L.分析了RNA测序数据。D.Y. 帮助设计了寡核苷酸子图和K.S. 克隆了子图。D.Y.帮助设计了寡核苷酸子图和K.S.克隆了子图。R.A.K. 和M.C.B. 写了手稿。 所有作者都讨论了结果和手稿。R.A.K.和M.C.B.写了手稿。所有作者都讨论了结果和手稿。
引起疟疾的疟原虫每个基因组约 30 Mb,编码约 5000 个基因,但大多数基因的功能仍不清楚。这是因为从序列同源性中获取的功能注释很少,而且与许多模型生物相比,其遗传可处理性较低。近年来,技术突破使得在疟原虫中进行正向和反向基因组规模筛选成为可能。此外,成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 技术的应用大大提高了单基因水平的基因编辑效率。在这里,我们回顾了疟原虫基因筛选的出现,以分析寄生虫基因在基因组规模上的功能及其对理解寄生虫生物学的影响。 CRISPR/Cas9 筛选彻底改变了人类和模型生物的研究,但由于需要更复杂的 CRISPR/Cas9 基因靶向载体库,因此尚未在疟疾寄生虫中实施。因此,我们向读者介绍了相关顶复门弓形虫中基于 CRISPR 的筛选,并讨论了如何调整这些方法来开发基于 CRISPR/Cas9 的疟疾寄生虫基因组规模遗传筛选。此外,由于超过一半的疟原虫基因是正常无性血液阶段繁殖所必需的,并且无法使用敲除方法进行靶向,我们讨论了如何使用 CRISPR/Cas9 来扩大条件基因敲除方法,以系统地为必需基因分配功能。
组合 CRISPR 技术已成为一种变革性方法,可系统地探测冗余基因对的遗传相互作用和依赖性。然而,不同的功能基因组工具在多路复用 sgRNA 方面的表现差异很大。在这里,我们生成并基准测试了十个不同的组合 CRISPR 文库,这些文库以同源物对为目标,以优化双基因敲除筛选。评估了由双化脓性链球菌 Cas9 (spCas9)、正交 spCas9 和金黄色葡萄球菌 (saCas9) 以及 Acidaminococcus 的增强型 Cas12a 组成的文库。我们证明了来自 spCas9 的替代 tracrRNA 序列的组合始终表现出优越的效应大小和 sgRNA 之间的位置平衡,这是一种强大的组合方法来分析多个基因的遗传相互作用。
人类蛋白质编码基因的身份众所周知,但我们对其分子功能和域结构的深入了解仍然受到基于同源性的预测和专注于全基因耗竭的实验方法的缺陷的限制。为了弥补这一知识空白,我们开发了一种方法,利用 CRISPR - Cas9 诱导的蛋白质编码基因突变来先验地识别序列水平的功能区域。作为一个测试案例,我们将这种方法应用于 48 个人类有丝分裂基因,揭示了细胞增殖所需的数百个区域,包括实验表征的区域、基于同源性预测的区域和新区域。我们验证了 15 个区域的筛选结果,包括 Mad1 的 387 - 402 个氨基酸,这些氨基酸以前未被表征,但有助于 Mad1 着丝粒定位和染色体分离保真度。总之,我们证明基于 CRISPR - Cas9 的平铺诱变可以从头识别蛋白质编码基因中的关键功能域,从而阐明功能突变体的分离并允许跨人类蛋白质组的功能注释。