识别对 IFN g 敏感性和抗性的遗传介质。Cas9 用于识别结直肠癌细胞系中调节 IFN g 反应的重要途径和基因。使用多碱基编辑诱变筛选来评估关键调节因子中意义不明确的变体 (VUS) 的功能后果。b) CRISPR-Cas9 筛选的基因级火山图,比较 IFN g 处理与对照
CRISPR-Cas9 可以扩大规模,用于培养细胞的大规模筛选,但动物的 CRISPR 筛选一直具有挑战性,因为生成、验证和跟踪大量突变动物的成本过高。在这里,我们介绍了多重混合 CRISPR 液滴 (MIC-Drop),这是一个结合液滴微流体、单针大规模 CRISPR 核糖核蛋白注射和 DNA 条形码的平台,可用于对斑马鱼进行大规模功能性基因筛选。该平台可以有效识别负责形态或行为表型的基因。在一个应用中,我们展示了 MIC-Drop 可以识别小分子靶标。此外,在对 188 个特征不明显的基因进行的 MIC-Drop 筛选中,我们发现了几个对心脏发育和功能很重要的基因。MIC-Drop 具有扩展到数千个基因的潜力,可在模型生物中进行基因组规模的反向遗传筛选。H
p53 通路的激活,阻止细胞生长并扭曲筛选结果 17 – 21,37,38 。然后我们 208
全基因组关联研究(GWAS)已确定与乳腺癌(BC)风险相关的200个基因座。大多数候选因果变体(CCV)在非编码区域,很可能通过调节基因表达来调节癌症风险。我们最近开发了一个评分系统询问,以预测BC风险基因座的候选风险基因。在这里,我们使用了汇总的CRISPR激活和抑制屏幕来验证询问预测,并定义了它们介导的癌症表型。我们测量了2D,3D和免疫缺陷小鼠中的增殖,以及对DNA损伤反应的影响。我们进行了60个CRISPR屏幕,并确定了21个介导癌症表型的高信任审讯预测。我们使用Hichip和CRISPRQTL验证了BC风险变体对基因子集的直接调节。此外,我们还显示了针对这些靶标的药物重新利用的表达分析的实用性。我们提供了一个平台,用于识别风险变异的基因靶标,并为降低风险和治疗的干预措施构成蓝图。
NXPHURXV UaWLRQaOO\-dHVLJQHd aQd dLUHcWHd-HYROXWLRQ YaULaQWV RI SSCaV9 KaYH bHHQ UHSRUWHd WR H[SaQd WKH XWLOLW\ RI CRISPR WHcQQRORJ\。 HHUH,ZH bHQcKPaUN PAM SUHIHUHQcHV,RQ-WaUJHW acWLYLW\,aQd RII-WaUJHW VXVcHSWLbLOLW\ RI 11 YaULaQWV RI SSCaV9 LQ cXOWXUH aVVKWKWKVHVJVJW HWLQJ HQdRJHQRXV JHQHV。 TR HQKaQcH WKH cRYHUaJH aQd WKXV XWLOLW\ RI baVH HdLWLQJ VcUHHQV,ZH dHPRQVWUaWH WKaW WKH SSCaV9-NG aQd SSG YaULaQWV aUH cRPSaWLbOH ZLRWK baVHVH baVH>,PRUH WKaQ WULSOLQJ WKH QXPbHU RI JXLdHV aQd aVVa\abOH UHVLdXHV。 WH dHPRQVWUaWH WKH SHUIRUPaQcH RI WKHVH WHcKQRORJLHV b\ VcUHHQLQJ IRU ORVV-RI-IXQcWLRQ PXWaWLRQV LQ BRCA1 aQd VHQHWRcOa[-UHVLXWaQWQW LWHWQL\ LQJ bRWK NQRZQ aQd QHZ LQVLJKWV LQWR WKHVH cOLQLcaOO\-UHOHYaQW JHQHV。 WH aQWLcLSaWH WKaW WKH WRROV aQd PHWKRdRORJLHV dHVcULbHd KHUH ZLOO IacLOLWaWH WKH LQYHVWLJaWLRQ RI JHQHWLc YaUlaQWV aW a ILQHU aQd dHHSWRI UXWHRUQL LcVHR HVW。
细菌基因组组装的指数级增长以及研究细菌生命多样性的重要性日益增加,导致人们越来越关注功能基因组学方法。通过将基因组规模的遗传扰动与高通量表型分析相结合,功能基因组学系统地定义了基因-表型关系,从而可以推断未知功能基因的功能。存在几种用于扰动基因功能的高通量方法,包括基于转座子的方法(例如 Tn-seq 和 TraDIS)、敲除收集和 CRISPR 方法。这些方法各有优缺点,并且通常以互补的方式部署。然而,我们对 CRISPR 理解的进步、DNA 合成成本的降低以及新的 CRISPR 模式已导致 CRISPR 被广泛用于整个细菌领域的功能基因组学研究。
细菌基因组组件的指数增加以及研究细菌寿命的全部多样性的越来越重要,导致人们对功能基因组方法的关注越来越大。通过将基因组规模的遗传扰动与高通量表型测定法结合起来,功能基因组学系统地定义了基因 - 表型关系,从而可以对未知功能的基因进行功能推断。存在用于扰动基因功能的几种高吞吐量方法,包括基于转座的方法,例如TN-SEQ和TRADIS,敲除收集和CRISPR方法。这些方法具有独特的优势和劣势,并且通常以互补的方式部署。然而,我们对CRISPR的理解,DNA合成成本的降低以及新的CRISPR模式的进步导致CRISPR广泛采用了整个细菌领域的功能基因组学研究。
与自然界中存在的巨大变异和基因组工程师设想的巨大变异相比,创建和表征单个遗传变异的规模仍然有限。在这里,我们介绍了逆转录子文库重组 (RLR),这是一种高通量功能筛选方法,其规模和特异性超过了 CRISPR-Cas 方法。我们利用逆转录子的靶向逆转录活性在体内产生单链 DNA (ssDNA),以 > 90% 的效率整合编辑并实现多路复用应用。RLR 同时引入了许多基因组变异,产生了可通过靶向深度测序寻址的汇集和条形码变异库。我们使用 RLR 对合成的抗生素抗性等位基因进行汇集表型分析,展示了相对增长率的定量测量。我们还使用进化细菌的剪切基因组 DNA 进行 RLR,通过实验查询数百万个序列以寻找因果变异,证明 RLR 特别适合利用大量的自然变异库。使用体内产生的 ssDNA 进行汇集实验为探索整个基因组的变异提供了途径。
摘要 生物动力馈通 (BDFT) 是未来驾驶舱触摸屏操作的一个关键问题,因为湍流导致的驾驶舱加速使飞行员容易受到错误触摸的影响,从而影响任务执行。本研究重点是实施基于软件的取消方法,以减轻 BDFT 在触摸屏拖动任务中的不利影响。进行了一项有 18 名参与者的飞行模拟器实验,以估计主飞行显示器上水平和垂直触摸输入的 BDFT 动力学模型。平均 BDFT 模型用于在用于模型识别的相同连续拖动任务和离散点对点拖动任务中取消 BDFT。虽然对于连续任务,取消使 BDFT 缓解了 63%,但由于 BDFT 敏感性降低,同样的取消对于离散任务无效。总体而言,结果表明,虽然基于模型的 BDFT 取消可能非常有效,但一个关键的技术挑战是确保它具有足够的任务自适应性。
基于 CRISPR-Cas9 文库的高通量筛选已成为一种有吸引力且强大的技术,用于识别功能研究的靶基因。然而,由于缺乏用户友好的实用程序和涵盖第三方实验的最新资源,公共数据的可访问性受到限制。在这里,我们描述了 iCSDB,一个使用人类细胞系的 CRISPR 筛选实验的综合数据库。我们汇编了两个主要的 CRISPR-Cas9 筛选来源:DepMap 门户和 Bi- oGRID ORCS。DepMap 门户本身是一个综合数据库,其中包括三个大型 CRISPR 筛选项目。我们还从 BioGRID ORCS 汇总了 CRISPR 筛选,它是来自 PubMed 文章的筛选结果集合。目前,iCSDB 包含 976 种人类细胞系的 1375 个全基因组筛选,涵盖 28 种组织和 70 种癌症类型。重要的是,我们消除了不同 CRISPR 库的批次效应,并将筛选分数转换为单一指标以估计敲除效率。我们还整合了临床和分子信息,以帮助用户轻松选择感兴趣的细胞系。此外,我们还实施了各种交互式工具和查看器,以方便用户在基因和指导 RNA 水平上选择、检查和比较筛选结果。iCSDB 可在 https://www.kobic.re.kr/icsdb/ 上找到。
