“海上发电站”是指通过基座附接于海床的平台,具有一个或多个甲板,无论是开放式还是全覆盖式,可容纳电力变压器、仪器仪表、保护和控制系统、中性点接地电阻器、无功补偿、备用发电设备、加油设施、辅助和不间断电源系统和变压器、住宿和/或应急避难所、起重设备、计量站、气象设备、直升机着陆设施、餐饮设施、饮用水储存、黑水分离设备、控制枢纽、排水设施、接入设备、J 型管、标记和照明以及其他相关设备和设施,以实现电子通信的传输和在平台上收集和输出电力,并且根据发电站的类型,还配备低压、中压和/或高压开关设备,和/或交流滤波器和/或带有开关装置的交直流转换器,和/或直流设备,包括直流电容器和直流滤波器;
6. 除 CS 许可证外,还需要获得皇家地产(“ TCE ”)或苏格兰皇家地产(“ CES ”)的皇家租约,才能在英国所有近海区域(包括毗邻苏格兰的领海)进行任何侵入性勘探或评估(包括钻井)或储存活动,因为根据《 2008 年能源法》第 1 条,在近海区域储存天然气(包括二氧化碳)的权利归皇家所有。TCE 和 CES 是法定机构,代表皇家作为领海区域内的土地所有者和领海以外英国海床主权所有者行事。TCE 和 CES 根据《 1961 年皇家地产法》 5 的规定作为商业土地所有者运营。NSTA 无法提供有关皇家地产租约的指导。任何希望申请 CS 许可证和储存许可证的人也应尽早与 TCE/CES 联系。
在全球范围内,海草草地以惊人的速度丢失,在过去的30年中,英国损失了多达40%的海草覆盖范围。海草提供各种生态系统服务,因此有几项努力旨在恢复英国这些丢失的草地。迄今为止,已经有三种中心的海草修复方法:将天然存在的海草移植到新地点,将种子直接种植到海床上,并种植了耕种的海草原位,将其种植到海洋环境中。这些方法对于英国海草物种Zostera Mariana和Z. Noltei取得了不同的成功。海洋保护信托基金(Oceant Trust)正在开发一条修复管道,该管道将种子在室内水产养殖设施中种植,并将已建立的植物移植到环境中。苗圃种子可以达到高发芽的成功率,但是这种成功目前是很大的变化,室内设施中的植物健康也是如此。
近年来,许多促成技术有望提高海洋活动和资源利用的效率和生产力。关键技术包括成像和物理传感器,卫星技术,高级材料,信息和通信技术,大数据分析,自治系统,生物技术,纳米技术和海底工程。印度的创新技术是基于海床的挖矿机器,用于收集矿物质,低温热海水淡化植物,深海微生物采样和孵化系统以及海啸预警的数据浮标。其他例子包括在泰国安装的渔船,以及采用液化天然气燃料发动机,以减少新加坡排放。第四次工业革命技术,例如区块链,物联网,云数据和大数据分析,也为管理,物流,运输和端口提供了重要的支持,以更加顺利地工作。
表 7-22:西澳大利亚电力排放强度......................................................................................................... 387 表 7-23 气候变化对特定分类群未来脆弱性影响概述(根据 Steffen et al 2009 修改)............................................................................................. 393 表 7-24 预计二氧化碳上升和气候变化对澳大利亚生态系统的影响(根据 Steffen et al 2009 修改)............................................................................................. 394 表 7-25:环境评估后的受体/影响矩阵......................................................................................................... 398 表 7-26:温室气体排放的影响、管理控制、影响重要性评级和 EPO 的摘要 ............................................................................................................. 402 表 7-27:水下声音的度量术语......................................................................................................... 404 表 7-28:方面源和工作频率及噪声水平......................................................................................................... 410 表7-29:脉冲噪声对鱼卵和幼体的影响总结 .............................................................................. 413 表 7-30:环境评估后的受体/影响矩阵 .............................................................................. 415 表 7-31:对鱼类的脉冲暴露阈值 (Popper 等人,2014) ........................................................ 416 表 7-32:行为障碍量表 (Southall 等人,2007) ............................................................................. 421 表 7-33:TTS 和 PTS 发作的噪声暴露标准 (NMFS 2018) 以及行为反应 (NMFS 2013) ................................................................................................................................ 422 表 7-34:海龟的脉冲噪声暴露 ............................................................................................................. 430 表 7-35:常规声发射的影响、管理控制、影响重要性评级和 EPO 总结。 ........................................................................................................... 437 表 7-36:环境评估后的受体/影响矩阵 .......................................................................................... 440 表 7-37:影响、管理控制、影响重要性评级和其他海洋使用者流离失所的 EPO 的摘要 ............................................................................................................. 445 表 7-38:FPU 海床扰动程度和内场地下扰动 ............................................................................................. 447 表 7-39:总体计划(联邦和州活动)建模情景摘要,包括每个情景下各个组成部分的排序 ............................................................................. 450 表 7-40:影响区定义 .............................................................................................................452 表 7-41:环境评估后的受体/影响矩阵 .......................................................................................... 466 表 7-42:实物存在可接受性的证明:海床扰动 ............................................................................. 483 表 7-43:常规海床扰动的影响、管理控制、影响重要性评级和 EPO 的总结 ............................................................................................................. 499 表 7-44:环境评估后的受体/影响矩阵 ............................................................................................. 504 表 7-45:污水和灰水的主要管理控制、可接受性、EPO 和剩余风险评级总结 ............................................................................................................. 508 表 7-46:环境评估后的受体/影响矩阵 ............................................................................................. 510 表 7-47:排放物的影响、管理控制、影响重要性评级和 EPO 总结 – 食品垃圾 .............................................................................................................................表 7-49:甲板排水和处理过的舱底水的影响、管理控制、影响重要性评级和 EPO 的摘要 ............................................................................................................. 522 表 7-50:达到氯稀释要求所需距离的远场建模估计(RPS,2019a) ............................................................................................................. 526 表 7-51:达到温度稀释要求所需距离的远场建模估计(RPS,2019a) ............................................................................................................. 527 表 7-52:背景评估后的受体/影响矩阵 ............................................................................................. 528 表 7-53:常规排放的可接受性证明:盐水和冷却水 ............................................................................................. 546 表 7-55:PW 建模摘要 ...................................................................................................................... 549 表 7-56:环境评估后的受体/影响矩阵 ...................................................................................................... 553 表 7-57:常规和非常规排放的可接受性演示:作业流体 ............................................................................................................. 560 表 7-58:影响、管理控制、运营排放的影响重要性评级和 EPO ...................................................................................................................................... 568
钻井活动期间,Ocean GreatWhite MODU 周围将设立一个临时的 500 米安全禁区,禁止未经授权的船只进入,禁止渔船进入。一艘应急响应和救援船 (ERRV) 将到达现场,除了为 Ocean GreatWhite 提供紧急支持外,它还将充当警卫船,告知其他用户系泊锚和绳索将延伸到 500 米禁区之外。由于在海床上预先铺设了锚,渔具可能会被钩住,BP HSE 已对此进行了评估,认为对渔业活动的危害极小。在钻井活动开始之前,将向海员发出所有适当的通知。鉴于 Ben Lawers 勘探井位于对英国渔业不太重要的区域,航运密度非常低,钻探活动持续时间相对较短,因此对其他海上使用者的影响并不大。
不列颠哥伦比亚省政府承认,我们的工作涉及许多原住民领地和条约地区,我们感谢其中包含的知识、教导和整体世界观。这些整体世界观过去和现在都是原住民管理土地、水、海床、空气和维持其生存的资源的基础,我们现在也同样依靠这些来维持、繁荣和发展。通过力量和韧性,海洋和沿海原住民之间的关系仍然牢不可破。原住民比任何人都更了解沿海海洋环境,他们可以分享很多东西来改善我们所有人和子孙后代的生活。如果没有原住民的参与,沿海海洋战略意向文件就不可能写成,不列颠哥伦比亚省政府期待通过共同制定沿海海洋战略继续合作并进一步加强政府间关系。向所有贡献作者、审稿人和支持本文制定的人表示感谢。
• 海洋气象设计和可操作性研究,适用于海上可再生能源、石油和天然气、航运和其他蓝色经济应用。 • 系泊设计和船舶响应分析。 • 通道、操纵区和内陆水道的设计,包括操纵模拟。 • 专业港口设计和评估咨询。 • 海床动力学和冲刷防护设计 • 软件开发。 • 海洋和气象数据销售。 • 海洋治理和蓝色经济。 这些服务通过咨询和基于网络的应用程序提供。它们由一支由海洋气象顾问、海岸工程师和造船工程师组成的专门团队提供支持。 Aktis Hydraulics 高度专业化,具有将海洋学、气象学和船舶响应专业知识结合起来的独特能力。 Aktis 高度重视以实用的方式发展我们的知识和能力,使我们的客户受益并使我们的员工工作更轻松。 Aktis 的主要办事处和法律办事处位于荷兰兹沃勒,在西班牙和法国设有常设机构,我们在拉罗谢尔也设有办事处。 角色
•“保护性”:该项目探讨了皇冠遗产如何支持高融合自然资本市场的发展,以从生态系统服务中产生收入,并加速对英格兰和威尔士海洋和沿海栖息地恢复的投资。•“有目的”:将投资直接投资到有助于实现可持续发展目标的项目和活动14(“保护和可持续地利用海洋,海洋和海洋资源来实现可持续发展”),因为它旨在了解皇冠遗产,即作为海底和预防的所有者,可以最佳地参与自然资本市场的范围,以最大程度地支持自然资本的投资和沿海的投资和加速范围。•“解决方案驱动”:该项目正在努力确定最合适的栖息地恢复项目的收入模型,这些模型可以证明环境成果,并与生物多样性福利一起回报投资。•“合作”:该项目正在采用多方利益相关者的方法,探索了皇冠遗产的机会,以交付从自然资本市场产生收入的恢复项目,同时为自然带来回报。
由于人类的消费不断增加,我们的星球正在迅速变化,这依赖于自然资源的大量投入,例如水,土地和能源。由增加的消费水平和对高科技金属的依赖驱动,采矿活动有望增长。这将增加对生物多样性的压力,生物多样性已经受到威胁:生命星球报告显示,自1970年以来,物种种群平均下降了69%。在保护工作有所帮助的同时,如果我们要扭转自然损失,则需要紧急行动。以及不断扩大的农业和不断增长的城市化,采矿是生态系统退化的主要驱动因素之一。通过一系列与勘探,提取,加工,冶炼,精炼和运输相关的一系列严重和持续直接和间接的环境影响,这有助于退化。重要的负面环境影响包括:•大地占地面积:采矿项目,尤其是开放坑地雷,通常占据大片土地,从而通过破坏生态系统,侵蚀或森林砍伐而导致环境退化。•能源使用和温室气体(温室气)排放:采矿是高能源密集型,占全球工业能源总使用的38%以上。•用水:在已经遇到严重水压水平的国家,采矿中高水需求的不利影响尤其明显。•废物:采矿通常会产生大量的废岩和尾矿,这些废物和尾矿需要存储并需要大型存储设施。•污染和污染:采矿过程的有毒残基,例如砷和铅或放射性物质,可以释放到周围环境中,并造成不可逆转的伤害。•生物多样性的丧失:采矿项目严重破坏了生态系统,威胁到生命环境中的栖息地和自然周期。•崇拜,海洋和深海开采:深海矿物质的探索和提取正在发展,并且会增加以前原始,未知和易受伤害的生态系统的人类足迹。•废弃的矿山,不足的康复:尽管法律要求大多数国家的矿业公司在矿山关闭后修复采矿地点,但康复通常不足,而且生态系统通常不可能恢复到其前州。•任何进一步的间接影响:通常是在以前未开发的地区建立采矿作业,建立了基础设施,以散布动物栖息地和导致人类迁徙,居住区的发展以及诸如偷猎等有害活动。