1 Andros West Side National Park 2 Crab Replenishment Reserve 3 Blue Holes National Park 4 North Andros Marine Park 5 South Andros Marine Park 6 Rand Nature Centre 7 Peterson Cay National Park 8 Lucayan National Park 9 Walker's Cay National Park 10 Black Sound Cay National Reserve 11 Fowl Cays National Park 12 Pelican Cays Land & Sea Park 13 Tiloo Cay National Reserve 14 Abaco National Park 15 Primeval Forest National Park 16 Harrold & Wilson Ponds National Park 17 Bonefish Pond National Park 18 The Retreat 19 Exuma Cays Land & Sea Park 20 Moriah Harbour Cay National Park 21 Leon Levy Native Plant Preserve 22 Conception Island National Park 23 Southern Great Lake National Park 24 Pigeon Creek and Snow Bay National Park 25 Graham's Harbour Iguana & Seabird National Park 26 West Coast Marine Park 27 Green's Bay National Park 28 Great Hope House 29 Marine Farm 30 Little Inagua National Park 31 Union Creek Reserve 32 Inagua国家公园33 Seahorse国家公园位于Sweetings Pond and Hatchet Bay
持续的低海冰范围是导致海洋地表水域变暖的贡献者。2022年的北极海冰范围与2021年相似,远低于长期平均水平。超越海冰范围向海冰时代(与海冰厚度有关(较老的海冰)相关的海冰时代,揭示了更多的清醒观察。北极已经从以多年冰为主导的地区过渡到以一年级(季节性)海冰为主的地区。,虽然海冰大于四岁,但2006年9月覆盖了100万公里,但在2022年9月仅覆盖127,000公里2。可能与高纬度海洋温度升高和海冰降低有关的一种影响是近期在阿拉斯加沿海沿海观察到的海鸟死亡的近期实例(请参见Sidebar 5.2)。这个和其他生态系统的影响,包括鱼类,海洋哺乳动物和陆基食品来源的气候变化,是北极土著人民和居民的严重关注,因为粮食安全和生态系统健康(例如,Search等人 2022; Crozier等。 2021; Mallory and Boyce 2018)。2022; Crozier等。2021; Mallory and Boyce 2018)。
持续的低海冰范围是导致海洋地表水域变暖的贡献者。2022年的北极海冰范围与2021年相似,远低于长期平均水平。超越海冰范围向海冰时代(与海冰厚度有关(较老的海冰)相关的海冰时代,揭示了更多的清醒观察。北极已经从以多年冰为主导的地区过渡到以一年级(季节性)海冰为主的地区。,虽然海冰大于四岁,但2006年9月覆盖了100万公里,但在2022年9月仅覆盖127,000公里2。可能与高纬度海洋温度升高和海冰降低有关的一种影响是近期在阿拉斯加沿海沿海观察到的海鸟死亡的近期实例(请参见Sidebar 5.2)。这个和其他生态系统的影响,包括鱼类,海洋哺乳动物和陆基食品来源的气候变化,是北极土著人民和居民的严重关注,因为粮食安全和生态系统健康(例如,Search等人 2022; Crozier等。 2021; Mallory and Boyce 2018)。2022; Crozier等。2021; Mallory and Boyce 2018)。
报告的目的是更新会员有关可持续航空测试环境(SATE)计划中的发展。背景由英国研究与创新(UKRI)通过工业战略挑战基金资助,Sate在奥克尼群岛的Hial的Kirkwall机场创建了英国第一个基于运营的低碳航空测试中心。作为乌克里未来飞行挑战的一部分推出,该挑战支持绿色飞行方式的发展,第一阶段始于2020年11月,于2022年7月结束。第二阶段从2022年7月开始,目前将于2025年3月结束后,经过批准的扩展。项目更新示范飞行和技术更新是在Windracers在Eday,Westray和North Ronaldsay之间进行9周试验后的9周试验,并使用其自飞货物飞机进行了下一套试验,计划从2025年5月开始为设得兰群岛开始。飞机的货物容量为700升,有效载荷能力为100kg,范围高达600公里。在整个奥克尼群岛上运营,使风格者能够在偏远地区获取知识和经验,并使该技术更接近商业应用。此外,一项关于海鸟殖民地的研究发现,由于无人机飞行,没有任何干扰迹象。Windracers将其飞行时间表与现有物流网络集成在一起,以建立潜在的机会。简化的运输集团将90%的最后一英里交付到苏格兰岛的奥克尼和设得兰群岛,将其电动货车用作可持续运输之旅的一部分。作为他们通往净零的道路的一部分,《简化无人机》为无人机提供了一个机会,可以从岛屿社区进行更多定期交付和当地生产的商品的收集。正在开发用例,以进一步洞悉技术如何改善连接性和服务。正在计划在设得兰群岛举行的利益相关者活动,为当地企业和利益相关者提供机会,以查看飞机近距离,并获得有关该计划的更广泛信息。
大理石海鸠 ( Brachyramphus marmoratus ) 长期以来一直被认为是太平洋西北地区的神秘鸟类,因为鸟类学家对其筑巢习性知之甚少,而且其近岸觅食习性使其难以调查。这种小型、鸽子大小的海鸟栖息于从阿拉斯加到加利福尼亚中部的北美沿海地区。在其大部分分布范围内,它筑巢于距离海岸约 25 至 50 英里的森林中,并在近岸海域以小鱼和无脊椎动物为食。与大多数在岩石峭壁或相对贫瘠的岛屿上群居筑巢的海雀不同,大理石海鸠在其大部分分布范围内以单独成对(或松散的群居)的形式在内陆老针叶树的宽阔上部树枝上筑巢。这种退化习性推迟了人们在北美发现其巢穴的时间,直到 1974 年,人们在加利福尼亚中部发现了一个巢穴(Binford 等人,1975 年)。从那时起,尽管在过去十年中付出了数千人日的努力,但到 1993 年的繁殖季节,只发现了不到 60 个巢穴(Nelson 和 Hamer,本卷 a)。在 20 世纪 80 年代,野外生物学家发现证据表明,许多(如果不是大多数)个体在未采伐的针叶原始森林中筑巢。进一步的研究(其中许多是本卷首次提出的)提供了有关栖息地使用、相对较低的繁殖率以及它们在巢穴中遭受的高掠食性的更多信息。至少在某些地区,证据也开始积累,表明大理石海鸠的数量近年来有所下降。这种下降被归因于原始森林的减少和破碎化、掠食增加、污染(尤其是石油泄漏)以及渔网造成的死亡。这种潜在的下降提高了管理敏感性,以确保在其整个范围内维持健康的相互作用种群。目前,美国将海鸠列为受威胁或濒临灭绝的物种。华盛顿、俄勒冈和加利福尼亚的鱼类和野生动物管理局以及加利福尼亚州和不列颠哥伦比亚省。对于大多数土地管理机构来说,这些清单需要对拟议项目对该物种的潜在影响进行清查和分析。如果发现对海鸠栖息地的不利影响,可能会导致缓解措施、项目修改、延误和可能的取消。
摘要 自动气象学 - 冰 - 地球物理观测系统 3 (AMIGOS-3) 是一个多传感器冰上海洋系泊和天气、摄像机和精密 GPS 测量站,由 Python 脚本控制。该站设计为部署在极地浮冰上,无人值守运行长达数年。海洋系泊传感器(Seabird MicroCAT 和 Nortek Aquadopp)记录电导率、温度和深度(CTD;以 10 分钟为间隔报告)以及流速(每小时报告一次)。Silixa XT 光纤分布式温度传感 (DTS) 系统通过冰和海洋柱提供温度曲线时间序列,节奏为 6/天到 1/周,具体取决于可用的站点功率。站点数据的子集由铱调制解调器遥测。双向通信使用单脉冲数据和文件传输协议,有助于站点数据收集更改和电源管理。电源由太阳能电池板和密封铅酸电池系统提供。 2020 年 1 月,思韦茨东部冰架 (TEIS) 安装了两套 AMIGOS-3 系统,可提供持续到 2022 年的数据。我们讨论了该系统的组成部分,并介绍了几组数据集,总结了观测到的气候、冰和海洋状况。关键词:仪器仪表、冰川学、实地观测、自动化、气候变化 1 简介 全年监测环境或地球物理系统是了解其演变过程的关键部分,而确定表征对变化(例如气候变化)的反应的事件则有助于更好地预测系统将如何演变。由于极地冬季环境带来的挑战,建立长期自动监测对于极地地区尤其困难。尽管自从早期发表有关类似站点的文章(Scambos 等人,2013 年)以来,已经开发出了各种各样的用于极地工作的自主观测系统,但迄今为止的大多数自动化系统都是针对特定的主要测量(例如地震活动、冰或岩石运动、天气监测或海洋状态)。这里我们描述了一个系统,该系统旨在同时观察多个环境和地球物理参数,观察区域内正在发生复杂且相互关联的变化。冰面或冰底快速融化的区域、异常的冰架或冰川动态或自由漂移的冰山都是这种多传感器多年观测系统的潜在场所。连续数年收集的气候-冰-海洋观测数据极大地促进了对气候(或天气)、海洋环流、冰损失和冰川加速之间局部尺度相互作用的理解和建模。自动气象学-冰-地球物理-观测系统-3(以下简称“AMIGOS-3”)站已经为多项已发表的研究做出了贡献,这些研究涉及气候、海洋、以及冰架上的冰川过程(Lee 等人,2019 年;Wåhlin 等人,2021 年;Alley 等人,2021 年;Wild 等人,2021 年;2022 年;Dotto 等人,2022 年;Maclennan 等人,2023 年)。