CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
CRISPR-Cas9 介导的基因组编辑的第一步是切割与 CRISPR 向导 RNA (gRNA) 中所谓的间隔序列互补的目标 DNA 序列。然而,一些 DNA 序列对 CRISPR-Cas9 切割具有抵抗性,这至少部分是由于 gRNA 折叠错误造成的。为了解决这个问题,我们设计了 gRNA,使其恒定部分具有高度稳定的发夹结构,并通过化学修饰进一步增强了它们的稳定性。“基因组编辑优化锁定设计”(GOLD)-gRNA 将基因组编辑效率提高了约 1000 倍(从 0.08% 到 80.5%),其他不同靶标的平均效率提高了 7.4 倍。我们预计,无论间隔序列组成如何,这种改进的 gRNA 都将实现高效编辑,并且在所需的基因组位点难以编辑时将特别有用。
CRISPR/Cas9系统作为一种高效的基因编辑工具,被广泛应用于研究和调控药用植物有效成分的生物合成途径,在提高药用植物有效成分的产量和质量方面具有巨大的潜力。通过精准调控关键酶和转录因子的表达,CRISPR技术不仅加深了我们对药用植物次生代谢途径的认识,也为药物研发和中药现代化开辟了新的途径。本文首先介绍了CRISPR技术的原理及其在基因编辑中的应用,然后详细讨论了其在药用植物次生代谢中的应用,包括有效成分的组成和CRISPR策略在代谢途径中的实施,以及Cas9蛋白变体和先进的CRISPR系统在该领域的影响。此外,本文还展望了CRISPR技术对药用植物研发进程的长远影响,并提出了目前研究中存在的问题,包括脱靶效应、基因组结构复杂、转化效率低、对代谢途径了解不足等,同时提出了一些见解,以期为CRISPR在药用植物中的后续应用提供新思路。总之,CRISPR技术在药用植物次生代谢研究中具有广阔的应用前景,有望促进生物医药和农业科学的进一步发展。随着技术进步和挑战的逐步解决,CRISPR技术有望在药用植物有效成分研究中发挥越来越重要的作用。
如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。 例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。 在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。 的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。 对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。 然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。 ,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。如今,“更多的摩尔”和“超过摩尔”设备体系结构已大大提高了新型材料的重要性,从而需要提供适当的表征和计量,以实现可靠的过程控制。例如,在多通道场效应设备或升高来源中使用的SIGE或SIP化合物的引入导致需要确定所得膜的精确组成。在这项工作中,已经使用主要无损haxpes和TOF-SIMS研究了二进制材料(例如SIP和SIGE)的定量。的确,虽然使用RB的主要障碍是薄膜的表征,但具有适当定量功能(例如Atom探针断层扫描和传输电子显微镜)的技术既耗时又耗时,并且由于其高度局部的分析量而缺乏灵敏度。对于定量表征,常规的X射线光电子光谱(XPS)是一个强大的工具。然而,其低分析深度仍然是研究掩埋界面的主要限制因素,尤其是在本研究中,因为所获得的基于SI的层在环境条件下被氧化(或者应该受到一些纳米计的金属层保护)。,由于电子在二元材料表面的化学组成和SIO 2在层中的深入分布,因此使用了一种基于实验室的硬X射线源(HAXPE),这既要归功于层次的SIO 2的深度分布,这要归功于电子的非弹性平均自由路径随光子能量增加的增加(铬Kα,Hν= 5414.7 ev)[1] [1]。确认通过HAXPES测量获得的感兴趣材料的组成并计算出适当的相对灵敏因子(RSF),相同的膜以TOF-SIMS为特征。但是,例如Haxpes,SIP/SIGE层的次级离子质谱法(SIMS)表征通常由于p/ge含量的电离产量的非线性变化而受到基质效应。通过分析参考样本,遵循MCS 2+辅助离子或使用完整的光谱协议[2],可以通过分析参考样品来超越此限制。最后,计算了次级离子束的P和GE(Si)组成,并将其与X射线衍射确定的参考组成进行比较。还研究了测量值的可重复性和层氧化的影响。得出结论,通过将haxpes结果与TOF-SIM耦合,准确评估了层的深入组成和表面氧化物的厚度。
1 1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。 5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药1非洲疼痛研究计划,麻醉和围手术医学系,神经科学研究所,开普敦大学,南非开普敦大学2 HIV镇2 HIV心理健康研究部,神经科学研究院,神经科学研究所,开普敦大学,开普敦大学,开普敦,开普敦大学,南非3号,伦敦市,伦敦,伦敦,伦敦,,开普敦大学,开普敦大学,开普敦大学,开普敦,伦敦,伦敦,伦敦,伦敦,伦敦,伦敦。 澳大利亚。5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。 6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药5光子学研究所,阿德莱德大学,南澳大利亚,澳大利亚。6 Division of Allergy and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Rondebosch, South Africa 7 Allergy and Immunology Unit, University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa 8 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA 9 Department美国马萨诸塞州波士顿的哈佛医学院麻醉,围手术期和止痛药
标题:1次诊断为遗传性眼部疾病的患者的次要发现对二次发现的诊断影响3 4跑步头:5个遗传性眼部疾病患者中的癌症基因6 7作者:8 Setu P. Mehta 1,Bani Antonio Antonio Aguirre 2,Bani antonio Aguirre 2,Wendy Y. N. Guthrie 4,Christy H. Smith 4,Jefferson J.10 Doyle 3,4,Mandeep S. Singh 3,4 11 12隶属关系:13 1。 约翰·霍普金斯大学医学院,巴尔的摩,马里兰州14 2。 杜克眼中中心,达勒姆,北卡罗来纳州15 3。 威尔默眼科研究所,约翰·霍普金斯大学,巴尔的摩,马里兰州16 4。 McKusick-Nathans遗传医学系,约翰·霍普金斯大学,巴尔的摩17号287-8343 25 26利益冲突:27没有作者没有任何相关的利益冲突。 28 29关键字:30个Stargardt疾病,视网膜基因疗法,色素性视网膜炎,蓝色锥单色单色,31个癌症,知情同意,遗传测序32 33承认34 a。资金/支持:基金会战斗CD-RM-0918-0749-JHU 35(MSS),约瑟夫·阿尔伯特·赫基米亚基金会1706611301(MSS),Andreas C. 36 Dracopoulos教授(MSS),Dracopoulos-Finkelstein Rising Professip 37(JJD)38 b。 财务披露:无39 c。其他致谢:无4010 Doyle 3,4,Mandeep S. Singh 3,4 11 12隶属关系:13 1。约翰·霍普金斯大学医学院,巴尔的摩,马里兰州14 2。杜克眼中中心,达勒姆,北卡罗来纳州15 3。威尔默眼科研究所,约翰·霍普金斯大学,巴尔的摩,马里兰州16 4。McKusick-Nathans遗传医学系,约翰·霍普金斯大学,巴尔的摩17号287-8343 25 26利益冲突:27没有作者没有任何相关的利益冲突。28 29关键字:30个Stargardt疾病,视网膜基因疗法,色素性视网膜炎,蓝色锥单色单色,31个癌症,知情同意,遗传测序32 33承认34 a。资金/支持:基金会战斗CD-RM-0918-0749-JHU 35(MSS),约瑟夫·阿尔伯特·赫基米亚基金会1706611301(MSS),Andreas C. 36 Dracopoulos教授(MSS),Dracopoulos-Finkelstein Rising Professip 37(JJD)38 b。财务披露:无39 c。其他致谢:无40
在最初的微生物研究中(尿培养,血液培养,痰液培养,用于SARS-COV-2,VRS和INFUENZAVIRUS A Y B)的鼻咽frotis的PCR。我们通过胸腔计算机断层扫描扩展了这项研究,该扫描显示出脾肿大和暗示肾脏移植中肾脏的迹象(图1)。微生物研究还通过呼吸道涂片和血液PCR扩展,用于腺病毒(440,017份/ml)的阳性病毒,以及其在尿液中的存在(5,071,409个拷贝/ml),这是辅助HC辅助辅助hc eDenovarytor to adenovirus to adenovirus to adenovirus的。鉴于发烧和贫血症的持续性,即使在免疫抑制减少后,我们也开始使用CID-OFOVIR进行抗病毒疗法。cidofovir是一种针对各种DNA病毒(包括腺病毒)的抗病毒活性,尽管由于其潜在的肾毒性,其在KT中的使用受到限制。美国指南推荐
MXenes 是一种寿命长达十年的陶瓷材料,于 2011 年在德雷塞尔大学首次发现 1 。它们的通式为 M n +1 X n T x , (n=1,2,3) ,其中 T 是表面终止原子,M 是早期过渡金属,X 是 C 或 N 2-4 ,MXenes 直接从其相应的 MAX 相蚀刻而成。后者是层状碳化物或氮化物结构,公式为 M n +1 AX n , (n=1,2,3) ,其中 A 是元素周期表 A 族元素,通常是第 13 或 14 族。在图 1 中,我们可以看到元素周期表中 MAX 相和 MXenes 的成分以及它们的结构。具有 OH 或 F 终端的碳化钛 Ti 3 C 2 是从钛铝 MAX 相 Ti 3 AlC 2 1 中发现的第一个 MXene。由于 Ti 3 C 2 T x MXene 仍然最具导电性 6–8,文献中对其在二次(即可充电)电池中的应用潜力进行了广泛研究。为此,人们试图通过操纵终端原子 8,9 来控制其电子和机械性能。可充电离子电池是一种基于离子插入的储能装置 10。通常,离子电池由阴极(正极)和阳极(负极)组成,并与含有离子的电解质接触。两个电极由微孔聚合物膜(隔膜)隔开,该膜阻止电子与离子一起在它们之间穿过 11。商用电池单元通常是在放电状态下生产的,而阳极和阴极电极在与大气接触时需要保持稳定 11。充电时,电极需要连接到外部电源,而电池
摘要 沙门氏菌病是欧盟第二大常见的食源性人畜共患病,猪是这种病原体的主要宿主。养猪生产中的沙门氏菌控制需要采取多种措施,其中可通过接种疫苗来减少流行血清型(如鼠伤寒沙门氏菌血清型)的亚临床携带和脱落。减毒活疫苗株在增强细胞介导免疫和允许通过口服途径接种方面具有优势。然而,这些疫苗的主要缺点是对异源血清型的交叉保护作用有限,并且会干扰感染的血清学监测。我们最近表明,减毒沙门氏菌菌株 (ΔXIII) 在鼠感染模型中对鼠伤寒沙门氏菌具有保护作用。ΔXIII 菌株含有 13 条染色体缺失,这使得它无法产生 sigma 因子 RpoS 和合成环二鸟苷酸 (c-di-GMP)。在本研究中,我们的目标是测试 ΔXIII 菌株对猪的保护作用,并研究使用 ΔXIII 是否可以区分已接种疫苗的猪和已感染的猪。结果表明,在断奶前仔猪口服 ΔXIII 疫苗可减少断奶和屠宰时的粪便脱落和回盲淋巴结定植,从而交叉保护仔猪免受鼠伤寒沙门氏菌的攻击。接种疫苗的猪在断奶时既没有粪便脱落,也没有疫苗菌株的组织持续存在,从而确保屠宰时不存在 ΔXIII 菌株。此外,ΔXIII 菌株中缺乏 SEN4316 蛋白,这使得开发血清学测试成为可能,从而区分感染动物和接种疫苗的动物 (DIVA)。
© 作者 2025。开放存取 本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议授权,允许以任何媒体或格式进行任何非商业性使用、共享、分发和复制,只要您给予原作者和来源适当的信任、提供知识共享许可协议的链接并表明您是否修改了许可材料。根据此许可,您无权共享源自本文或本文部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料致谢中另有说明。如果材料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,您需要直接从版权所有者处获得许可。要查看此许可的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
