低级神经胶质瘤的清醒手术被认为是改善切除程度并保证患者“有价值的生活”的最佳程序,这不仅避免运动,而且还避免了认知缺陷。然而,位于右半球,尤其是右额叶的肿瘤仍然很少在清醒状态下操作。原因之一可能是,文献中很少有信息描述右侧膜神经瘤切除后持久神经心理缺陷的速度和性质。在右侧IDH突变的神经胶质瘤中醒来手术后的长期认知缺陷。我们回顾性地分析了2012年至2020年之间连续的一系列清醒外科手术切除术,用于右额叶IDH突破性神经胶质瘤。我们研究了患者的主观投诉和手术前后的客观神经心理学评估。然后,我们的结果对文献进行了视角。该研究包括18例患者(中等年龄:42.5 [26-58])的20例手术病例(包括5例重做手术)。中位术前体积为37 cc;谁的评分分别为70%,20%和10%的病例分级。术前,很少有患者患有相关的主观认知或行为障碍,而评估显示45%的病例中有轻微的缺陷,最常见于执行功能,注意力,工作记忆和速度处理。术后立即评估表明,在75%的病例中,执行功能严重缺陷,但注意力缺陷(65%),空间忽视(60%)和行为障碍(冷漠,阿顿疗法/ amimimia,情感敏感性,情感障碍,厌食症)。手术后四个月,尽管心理测量z得分在小组级别没有变化,但个人评估显示9/20病例的表现略有下降,至少一个领域之一:执行功能,速度处理,注意力,语义认知,社会认知。我们的结果通常与文献的结果一致,证实右额叶是一个高度雄辩的领域,并暗示在清醒条件下操作这些患者的重要性。
通过物质对电子传输的抽象模拟在许多应用中使用。其中一些需要在计算时间和在广泛的电子能量中准确的模型。对于某些应用,例如放射化学和放射疗法,金属纳米颗粒增强了,希望考虑相对较低的能量电子。,我们已经在固体金属介质中实施了一个物理模型,以符合上述两个要求的固体金属介质中的低能。本文的主要目标是介绍我们的蒙特卡洛模拟的理论框架,其应用于金属金属,并与电子束照射的金箔可用数据进行了广泛的比较,用于从几个EV到90 KEV的弹丸能量。尤其是我们计算了二级电子排放,以评估我们在50 eV以下的能量时代码的准确性。即使低能电子的向后发射产率被系统地低估,也与实验达成了密切的一致性。尽管如此,在存在金纳米颗粒的情况下,诸如纳米尺度法或放射化学等纳米级应用的质量和数值效率令人鼓舞。
季节性流感(流感)是全球重要的公共卫生问题,导致年度发病率和死亡率(1)。每年,尤其是在冬季,季节性流感会影响全球多达十亿人,大多数情况是温和的。但是,世界卫生组织(WHO)估计有3至500万例病例患有严重疾病,每年导致290,000-650,000例呼吸道死亡(2)。 流感的负担超出了个人健康,施加经济和医疗体系在全球范围内挑战。 在沙特阿拉伯,流感样疾病(ILI)和严重的急性呼吸道感染(SARIS)的发生率显着增加,与往年相比,2022年的尖峰显着(3)。 中东和北非流感的流行病学表明,流感和B分别占病例的76.5和23.5%,流感在86.8%的季节中占主导地位(4)。 大多数国家表现出与北半球相似的季节性模式,但阿拉伯半岛等地区经历了次要峰,这主要是由于大规模的人口运动。 尽管有流感疫苗的可用性,但全球摄入量仍然是最佳的。 一项2021年的研究,研究了对沙特阿拉伯流感疫苗意识的人口统计学和教育影响,发现50%的被调查成年人接种疫苗。 同时,由于缺乏意识和安全问题,有42%的人表现出疫苗犹豫不决(5)。 疫苗接种被广泛认为是一种有效的预防措施,降低了住院和死亡率(6,7)。但是,世界卫生组织(WHO)估计有3至500万例病例患有严重疾病,每年导致290,000-650,000例呼吸道死亡(2)。流感的负担超出了个人健康,施加经济和医疗体系在全球范围内挑战。在沙特阿拉伯,流感样疾病(ILI)和严重的急性呼吸道感染(SARIS)的发生率显着增加,与往年相比,2022年的尖峰显着(3)。中东和北非流感的流行病学表明,流感和B分别占病例的76.5和23.5%,流感在86.8%的季节中占主导地位(4)。大多数国家表现出与北半球相似的季节性模式,但阿拉伯半岛等地区经历了次要峰,这主要是由于大规模的人口运动。尽管有流感疫苗的可用性,但全球摄入量仍然是最佳的。一项2021年的研究,研究了对沙特阿拉伯流感疫苗意识的人口统计学和教育影响,发现50%的被调查成年人接种疫苗。同时,由于缺乏意识和安全问题,有42%的人表现出疫苗犹豫不决(5)。疫苗接种被广泛认为是一种有效的预防措施,降低了住院和死亡率(6,7)。然而,在地理位置和人口群体之间,疫苗接种覆盖范围差异很大,受社会经济地位,文化信念和错误信息影响的差异(8,9)。宗教和文化观念进一步影响疫苗的吸收,一些人正在考虑疫苗不必要或不自然的干预措施(10)。一项关于疫苗犹豫的全球研究确定了人们对副作用,感染的低风险以及对疫苗制造商的不信任的担忧,这是疫苗接收的主要障碍(11)。在沙特阿拉伯,公众对卫生机构的信任,可及性和社会影响力等因素严重影响了疫苗接种的决定(12)。麦加展示了一种独特的流行病学环境,因为它每年为朝j和乌姆拉(Hajj and Umrah)接待数百万国际游客,为快速传播呼吸道疾病创造了理想的环境。鉴于这种高风险的环境,确保居民和访客的足够的流感疫苗覆盖范围是公共卫生的优先事项(13)。虽然先前的研究探讨了各种全球人群的疫苗接种,但了解麦加对季节性流感疫苗的个人的态度和行为仍然存在显着差距。这项横断面研究旨在通过调查公众看法,吸收率和影响麦加流感疫苗接种的关键因素来解决这一差距。通过识别障碍和促进者来疫苗接种,这些发现将有助于开发有针对性的公共卫生干预措施,以改善疫苗接种覆盖范围并减轻该高密度地区的季节性流感负担。
©作者2024。Open Access本文在创意共享属性下获得许可 - 非商业 - 非洲毒素4.0国际许可证,该许可允许以任何中等或格式的任何非商业用途,共享,分发和复制,只要您与原始作者提供适当的信誉,并为您提供了符合创造性共识许可的链接,并提供了持有货物的启动材料。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/by-nc-nd/4.0/。
10 1. 南安普顿大学医学院临床信息学研究组,英国南安普顿 12 2. 马来西亚沙亚南管理与科学大学国际医学院社区医学系,马来西亚沙亚南 40100 14 3. 亚洲大都会大学医学院社区医学系,马来西亚新山 81750 16 4. 马来西亚莫纳什大学谢富年医学与健康科学学院全球公共卫生系,马来西亚双威镇 47500 18 5. 马来西亚赛城大学医学院精神病学系,马来西亚赛城 63000 20 6. 系:刑事司法教育学院,机构:JH Cerilles 州立学院,菲律宾三宝颜德尔苏尔 7028,卡里达德 22 7. 东南亚社区观察站(SEACO),Jeffrey Cheah 莫纳什大学马来西亚医学与健康科学学院,马来西亚双威镇 47500,23 24 25
靶标和结合渗透性降低,(iv)突变(7)。通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。 AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。 对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。 在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。 双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div> The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13) 在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。 材料和方法通过氨基糖苷修饰酶(AMES)对抗生素失活是对氨基糖苷耐药性的主要机制(8,9)。AME由几个基因在细菌物种之间水平转移,从而产生其他细菌耐药机制(10)。对氨基糖苷的抗性主要由五类AME介导,如下所示:Aminoglycoside-6'-N-N-乙酰基转移酶/2'' - O- o-磷酸溶质转移酶[AAC(6'')/APH(2'')]由AAC(6')/APH(6')/APH(2')/aph(2'')Gene; Aminoglycoside-3'-o-磷酸磷酸化酶III [APH(3')-III]由APH(3')-IIIA基因编码;氨基糖苷-4'-o-磷酸磷酸化酶i [ant(4') - i]由ant(4') - ia基因编码;由ANT(9) - I基因编码的氨基糖苷-9-O核苷酸转移酶I [ANT(9)-i]和ANT(6) - I Gene编码的ANT(9) - I基因和氨基糖苷-6-O-Nucleotidyltransferase I [ANT(6)-I]。在葡萄球菌中,蚂蚁(4') - i,aac(6')/aph(2'')和aph(3')-III分别是影响毒霉素,庆大霉素和卡纳米霉素的最常见的AME(11)。双功能AME AAC(6') / aph(2英寸)赋予对除链霉素以外的几乎所有氨基糖苷的抗性(12)。< / div>The aac(6')-Ie/aph(2")-Ia (also named aacA - aphD ) gene has been located on the plasmids, transposons such as Tn 4001 (in S. aureus ), Tn 5281 (in enterococci), and Tn 4031 (in S. epidermidis ) and the other mobile genetic elements, increasing the aminoglycoside resistance and the对其他化合物的抗性(13)在欧洲,亚洲和南美国家中报道了高级庆大霉素耐药性(HLGR)的增加。材料和方法本研究试图确定金黄色葡萄球菌和编码AMES和FEMA的临床分离株中抗生素耐药性的频率,AMES和FEMA是金黄色葡萄球菌在金黄色葡萄球菌中表达甲基甲基蛋白耐药性必不可少的,并且还参与了北极蛋白酶蛋白酶的葡萄球菌细胞Wall的生物合成。
该研究使用了横截面设计,并在2022年4月24日至6月23日之间从加纳阿散蒂地区的曼蓬市政府收集了一次性数据。该研究认为,不同干部(表1)的医护人员对Covid-19疫苗的吸收是一种综合因变量。然后,我们确定了列出共同感知因素的关联因素,例如感知的COVID-19感染的严重性,感知的疫苗安全,感知到的原籍国,Covid-19感染的风险以及WHO或GHANA MINIS MINIS HEALTH(MOH)对专家建议(MOH)对专家建议的信任。使用在线Google表格从参与者那里收集了参与者以前的病史和社会人口统计学特征,例如年龄,性别,宗教,宗教,婚姻状况,教育地位和居住区,并在多个逻辑回归模型中进行了调整(图1)。
随着机器人技术和人工智能的快速发展,人类机器人的协作和互动已成为研究和技术发展的基石。机器人系统与人类合作伙伴的无缝整合对于提高不同应用程序领域的效率,适应性和安全性至关重要。本专注的部分重点介绍了人类 - 机器人协作和互动技术的最新突破,展示了对共享自治,适应性控制,环境系统以及工业,医疗保健和互动环境的共同自主权,适应性控制,人类融合系统的新贡献。本专注的部分收到了80篇论文提交,通过严格的同行评审过程从中选择了9篇论文。这些论文被组织为三个关键主题:(1)辅助应用中的人与动物的相互作用,(2)安全且智能的人类 - 动物统计的高级方法,以及(3)人类与机器人交流的创新界面和技术。每个贡献都为构成了下一代人类与机器人协作和互动所面临的挑战和解决方案提供了宝贵的见解。
ufuk topcu教授德克萨斯大学在奥斯汀上举行,2025年2月28日,星期五,上午10:30麦克唐纳·道格拉斯工程礼堂(MDEA)摘要:自主系统正在作为无数应用程序的驾驶技术出现。许多学科应对使这些系统值得信赖,适应性,用户友好和经济的挑战。另一方面,现有的纪律界限延迟,甚至可能阻碍进步。我认为,设计和验证自主系统在控制,学习和正式方法的交集(除其他学科)时,出现的非惯例问题需要混合解决方案。我将在顺序决策过程中学习中的这种混合解决方案的示例。这些结果提供了有效地将基于物理,上下文或结构性的先验知识整合到数据驱动的学习算法中的新颖手段。他们通过对环境和系统以前没有经历的环境和任务的多个数量级和通用性提高了数据效率。我将在一些有希望的未来研究方向上发表评论。BIO:UFUK TOPCU是德克萨斯大学奥斯汀大学航空航天工程与工程机制的教授,他在那里拥有W.A.“ Tex” Moncrief,Jr。 计算工程和科学VI主席。 他是德克萨斯机器人技术和奥登计算工程与科学研究所的核心教师,也是自治中心主任。“ Tex” Moncrief,Jr。计算工程和科学VI主席。他是德克萨斯机器人技术和奥登计算工程与科学研究所的核心教师,也是自治中心主任。他的研究重点是自主系统设计和验证的理论和算法方面。
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定