气候变化是21世纪最紧迫的问题之一,影响了世界各国的生态系统,经济和社会。全球温度的升高,极端天气事件的频率以及自然资源的持续消费突出了一种集体方法的紧迫性。气候变化通常是由燃烧化石燃料,砍伐森林,牲畜以及其他基于人类的生活方式和对发展渴望的行为引起的。具体来说,气候变化的主要原因和地球温度的变化包括产生能力,制造商品,使用运输和发射温室气体的费用。覆盖地球的气体排放,然后捕获太阳的热量,导致全球变暖和气候变化。
2 很少有人说明太阳能容量数据是以交流电(净输出)还是直流电(DC,总输出)为单位报告的。这个总数假设所有太阳能容量都以直流电(DC,总功率)为单位报告。然而,在所有不确定报告都以交流电而非直流电为单位的极端情况下,总数可能高达 672 GW。
本文提出了一个基于代理的模型 (ABM),用于描述技术范式和新部门的内生性出现,其中包括不同的劳动力创造和破坏模式以及消费动态。该模型以劳动力增强型 K+S ABM 为基础,研究了从不同形式的技术变革中产生的长期劳动力需求模式。它提供了一个多层次、综合的视角来审视所谓的未来工作情景,而这些情景目前通常局限于公司层面或短期部门分析,并研究了劳动力创造和破坏趋于平衡的条件。这是一种相对公平和稳定的收入分配,由福特式的劳动力市场监管制度保证,保证了该模型永远不会达到完全技术失业的阶段。技术变革与总需求之间的协调模式也由不断增加的产品复杂性来确保,产品复杂性不断增加,从而不断吸收劳动力。
注释 *直接是成人社会护理部门所产生的影响,不包括非正式护理。*间接是成人社会护理对中间商品和服务的需求所产生的影响。*引起的是直接和间接在成人社会护理部门使用的个人购买行为的变化所产生的影响。* GVA由正式成人社会护理和独立护理提供者的利润中的员工收入。*使用2023个数据估算所有值。*值的总和可能与由于舍入的总值不同。* fte =全职等效
农业部门需要能源,因为能源是生产的重要投入。农业直接使用能源作为燃料或电力来操作机械和设备,在灌溉中使用燃料来运行拖拉机和其他机械,以及在农场照明,并间接用于农场生产的肥料和化学品。现代农业需要现代能源——两者紧密相连。对于许多发展中国家和欠发达国家来说,农业是经济发展的主导部门。生产力的提高和农业生产系统的现代化是全球减贫的主要驱动力,而能源在实现这一目标方面发挥着关键作用。对现代和可持续农业生产和加工系统的能源投入是从自给农业转向粮食安全的关键因素。能源服务通过提供灌溉(水泵)或农业机械等方式巧妙地支持生产过程。
本出版物为国内机构部门和整体经济提供了资产负债表。记录了由联邦统计办公室计算的非财务资产,以及由德意志政府银行编制的金融资产和负债。方法论基础始终是2010年欧洲帐户体系(ESA 2010)。这个统计框架对欧盟的所有国家都具有约束力,自2014年9月以来,一般规则将总资产分解为非金融资产和金融资产。此外,它还包含统一分类非金融资产,金融资产和负债以及机构部门的规定。以下这两个组成部分的以下合并以形成综合资产负债表,或多或少地完整地了解了当前统计记录的资产,无论是在部门层面还是在整个经济中。仅在非财务资产的领域发生,因为在ESA 2010中定义的所有非财务资产类别都不可用。相应的数据均可用于库存或贵重物品,也不适用于土地以外的非生产资产,例如底土资产,水资源等。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
注释 *直接是成人社会护理部门所产生的影响,不包括非正式护理。*间接是成人社会护理对中间商品和服务的需求所产生的影响。*引起的是直接和间接在成人社会护理部门使用的个人购买行为的变化所产生的影响。* GVA由正式成人社会护理和独立护理提供者的利润中的员工收入。*使用2023个数据估算所有值。*值的总和可能与由于舍入的总值不同。* fte =全职等效