©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
一般CCS参考艾伯塔省政府。2023。碳捕获,利用和存储。在线网站actalberta.ca。Bachu,S.,Heidug,W。和Zarlenga,F。2005。第5章。地下地质存储。在书中:IPCC有关CO2捕获和隔离的特别报告。(第195-265页)。出版商:剑桥大学出版社。英国地质调查局。2023。碳捕获和存储(CCS),BGS研究。网站资源。Dwivedi,R。2019。什么是碳固存。https://www.azocleantech。com/com/acrat.aspx?aprentid = 28 Halder,S。2022。揭示了碳捕获和存储的最佳见解。TGS在线文章。Kaplan,L。2023。全球CCUS支出预计到2023年至2030年之间的2560亿美元超过2560亿美元。Rystad Energy。 Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。 2019。 概述矿物质和地质形成中二氧化碳存储的状态和挑战。 气候期刊的边界1:9,www.frontiersin.org。 国际CCS知识中心。 2020。 一目了然的碳捕获存储。 海报。 CCS知识中心,萨斯喀彻温省Regina。 Lacey,D。2023。 CCS:挑战,机会和需求。 BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。Rystad Energy。Kelemen,P.,Benson,S.M。,Pilorge,H.,Psarras,P。和Wilcox,J。2019。概述矿物质和地质形成中二氧化碳存储的状态和挑战。气候期刊的边界1:9,www.frontiersin.org。国际CCS知识中心。2020。一目了然的碳捕获存储。海报。CCS知识中心,萨斯喀彻温省Regina。Lacey,D。2023。CCS:挑战,机会和需求。BOE中的文章。 IEA CCUS项目数据库。 2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。 章节。BOE中的文章。IEA CCUS项目数据库。2023。https://www.iea.org/data-and-Statistics/Data-Product/ccus-projects-database database oldenburg,C. 2011。章节。地质碳固并作为减轻CO2排放的全球战略:可持续性和环境风险。劳伦斯·伯克利国家实验室,www.osti.gov Robertson,B。和Mousavian,M.2022。碳捕获关键:经验教训。IEEFA(能源,经济学和财务分析研究所)文章。 美国能源部。 1999。 碳固相研究和开发。 报告可在www.ornl.gov/carbon_sepertration/ 上获得IEEFA(能源,经济学和财务分析研究所)文章。美国能源部。1999。碳固相研究和开发。报告可在www.ornl.gov/carbon_sepertration/
蓝色碳是由海洋生态系统中的活生物体捕获的碳,并存储在生物质和沉积物中。对识别和表征蓝色碳栖息地的兴趣越来越大,因为它们对于理解未来如何为净零目标做出贡献至关重要。目前,英国温室气体IINVENTORY(GHGI)中不包括蓝碳栖息地,但是,政府间气候变化(IPCC)湿地补充剂(IPCC,2014年)包括量化和委托GHG排放和撤离的准则,包括与湿地类型的管理,包括SALTM和SALTM的管理,以及与SALT的管理相关联。其他蓝色碳栖息地,例如降潮和潮间带海洋沉积物,目前尚无将其纳入英国GHGI的机制。
土地和海洋之间红树林生态系统的独特定位使它们在氮循环中至关重要。硝化在氮循环中的作用对于提供红树林易于吸收的氮化合物很重要。然而,红树林地区的硝化过程和硝化细菌尚未全面理解。这项研究的主要目的是通过进行系统的综述,对红树林沉积物中的硝化细菌进行全面分析。系统评价和荟萃分析方法的首选报告项目被用作有助于系统地报告评论的指南,并具有流程图以显示选择相关研究的过程。数据收集是通过使用6个数据库和包括Scopus,PubMed,ResearchGate,Google Scholar和Springer在内的期刊搜索引擎进行的,以实现更全面的发现。这项研究采用了广泛认可且常用的技术,通过首先识别人口,干预,比较和结果来以重点方式定义评论的范围。这项研究确定了358项研究,筛查后审查中包括了31项研究。基于筛查结果,关于红树林沉积物中硝化细菌的研究在地理上仅限于印度尼西亚,越南,泰国,中国,墨西哥,美国,印度和沙特阿拉伯等多个国家。氨氧化细菌通常是主要的群体,但是各种硝化细菌基团在不同的红树林环境中分布多样。这项研究表明,在红树林沉积物中硝化细菌之间存在高度的多样性,五个不同的组鉴定出来:氨氧化细菌,亚硝酸盐氧化细菌,厌氧菌细菌和comammammox细菌,最近鉴定出的组。在进行氮化合物的变化时,从硝化过程的不同步骤中使用功能基因的硝化作用,例如硝酸氨基酶,单加氧酶亚基A,亚硝酸盐氧化剂氧化液亚基A,硝酸盐亚基亚基,硝酸盐还原链链酶,一氧化氧酶,氮的再生氮,氢氮合酶,肼氧化还原酶和羟胺氧化还原酶基因。这项研究还表明了红树林沉积物中的植被类型和硝化细菌的分布。这些沉积物的深度通常从0到60厘米不等,大多数样品以0到20厘米的深度采集。采样位置的植被类型由Kandelia Candel,Avicennia Marina,Kandelia Obovata和Rhizophora Mangle的种类主导。关于硝化细菌在红树林沉积物中的限制为深入研究提供了机会。这项全面的综述提供了对硝化细菌的多样性和传播的深入概述,强调了它们在氮循环中的作用,并强调了发现红树林沉积物中新硝化细菌的潜力。
背景和目标:红树林的主要功能是沉积物中的碳固执。这项研究旨在确定各种红树林和环境参数中沉积物中碳含量的差异。方法:这项研究是在佩萨瓦兰(Pesawaran)作为天然红树林进行的,在南坎普(South Lampung)作为印度尼西亚修复的红树林进行。目的抽样方法。使用直径为47.46千米的聚氯乙烯管和高度为30厘米的聚氯乙烯管进行沉积物采样。 所测得的沉积物参数是块状密度,碳储量和固存。 测量的环境参数包括沉积物纹理,氢的潜力,温度,盐度和总溶解固体。 使用主成分分析进行了统计分析,以确定有机碳库存与环境参数之间的关系。 的发现:研究结果表明,天然红树林(Pesawaran)的有机碳值比修复的红树林(South Lampung)的有机碳值高2.2±0.32%,为0.9±0.25%。 主成分分析结果表明,有机碳,二氧化碳当量,碳储备和碳固换具有正相关特性受盐度,淤泥和粘土影响,而负相关特性则受温度,总溶解固体和沙子的影响。 沉积物质地的分布倾向于在修复的红树林中显示出更多的淤泥,而天然红树林往往在沙子和淤泥之间具有相同的成分。沉积物采样。所测得的沉积物参数是块状密度,碳储量和固存。测量的环境参数包括沉积物纹理,氢的潜力,温度,盐度和总溶解固体。使用主成分分析进行了统计分析,以确定有机碳库存与环境参数之间的关系。的发现:研究结果表明,天然红树林(Pesawaran)的有机碳值比修复的红树林(South Lampung)的有机碳值高2.2±0.32%,为0.9±0.25%。主成分分析结果表明,有机碳,二氧化碳当量,碳储备和碳固换具有正相关特性受盐度,淤泥和粘土影响,而负相关特性则受温度,总溶解固体和沙子的影响。沉积物质地的分布倾向于在修复的红树林中显示出更多的淤泥,而天然红树林往往在沙子和淤泥之间具有相同的成分。自然和修复的红树林中氢条件的潜力没有明显的值差异。佩萨瓦兰的盐度被归类为天然红树林,由于潮汐的影响,直接面对海岸线。与此同时,在南坎普(South Lampung)被归类为已修复的红树林,由于较长的干旱季节,盐度较低,而运河无法支撑进入红树林的水。结论:研究地点的有机碳含量受到根茎型叶片的年龄较大的影响,而根瘤菌粘膜粘膜和ceriop thakal类型的红树林的影响。自然红树林的碳固相值值为1.65–3.14,而修复的红树林的碳固化速率值则显示为0.29–1.25,因此,自然红树林中的速率比康复的成熟楼层高(2-3倍)。
通过引入损害环境整体功能的组成部分,工业化和全球化的进步一直在恶化性质。塑料和重金属被广泛融合到我们的日常生活中,生产和消费都会产生最终处置的废物,这些废物无法充分管理。在目前的工作中,研究了从湿地沉积物中分离出的天然微生物介导的两种生物修复机制。已经报道了在这些地点的两种污染物的存在。根据细菌根据其形态和代谢特征分组。选择用于进一步测试的细菌的决定性标准是生物膜形成。据报道,这种能力是塑料生物降解的第一步。评估了表现出较高生物膜形成的最佳5种细菌的生物降解能力,并且在单独的系统中,它们在不同的铬浓度下生长并将重金属生长到无害形式的能力。选择了三种表现最好的细菌来评估其在包含两种污染物的批处理系统中的生长。聚丙烯是在既定条件下生物降解的,结果表明,两种造成这种降解的细菌属于骨pen虫属,而第三个细菌属于溶质性。这些属据报道为聚丙烯生物降解剂,但不存在其他污染物。这项工作中提出的结果可能是新研究的起点,该研究将使未来在生物修复过程中污染环境中使用本地微生物。
极性区域是地球上最快的变暖场所。加速的冰川融化会导致养分的增加,例如金属氧化物(即铁和锰氧化物)进入周围环境,例如波特湾的海洋沉积物,乔治岛国王岛/伊斯兰国王25 de Mayo(西南极半岛)。微生物氧化物还原和相关的微生物群落在南极沉积物中的理解很少。在这里,我们通过对原位沉积物孔水的地球化学测量以及伴随16S rRNA测序的泥浆孵育实验进行了调查。脱母瘤属的成员是孵化中锰氧化锰和乙酸盐修正的主要响应者。与锰和/或乙酸盐利用相关的其他生物包括去硫纤维瘤,sva1033(脱硫素甲甲藻家族)和未分类的Arcobacteraceae。我们的数据表明,Desulfuromonadales的不同成员最活跃于有机型锰的降低中,从而提供了有力的证据,证明了它们与永久冷南极沉积物中锰减少的相关性。
微塑料(MP)是多种多样的,并且存在于广泛的类型,尺寸,颜色,信息和组成中。因此,需要高准确性,选择性,灵敏度和效率来检测和量化MP的高级分析技术。几项研究已经发表了方法和结果。但是,很少有人提供精度,恢复测试和方法比较,以确保结果的正确性。量子级联激光光谱光谱(QCL-µ IR)是基于其独特的化学特征的颗粒对颗粒的无损鉴定。与用于识别的机器学习(ML)算法相结合,导致了快速,准确和稳健的分类。此外,使用热解气相色谱 - 质量光谱法(PY-GC-MS)可以根据其独特的化学成分对MP进行精确表征和定量。MP,以两步化的化学消化和45 µ µM不锈钢过滤器进行进一步过滤。使用随机森林算法重新处理了从QCl-µ IR(日光解决方案SPEROQT 340)获得的光谱数据。使用PY(前沿,实验室;日本福岛)GC-MS(Thermo Scientific,MA,USA)进一步分析了MP,对相关聚合物类型和样品矩阵进行了优化,可实现量化的低限制(在0.01和0.1 µ g之间),并控制恢复。
研究沉积档案中抗生素耐药基因(ARGS)的发生提供了重建历史(即非人性化来源)Args的分布和传播的机会。尽管在淡水环境中的ARG引起了极大的关注,但几个世纪以来几个世纪以来,多样性和丰富性的历史差异仍然很大程度上是未知的。在这项研究中,我们研究了过去600年的成谷湖沉积物中发现的细菌群落,ARG和移动遗传因素(MGE)的垂直变化模式。在保存在沉积物中的抵抗中,发现177个Args亚型,氨基糖苷和多药耐药性最丰富。上层沉积物层中的Arg丰度(等效于1940年代以来抗生素时代)低于抗生素时代期间的Arg丰度,而在后抗生体时代,ARG的多样性较高,可能是因为在最近的几十年中,人类诱导的综合疗法促进了BAC的促进和替代品的剂量。统计分析表明,MGE的丰度和细菌群落结构与ARG的丰度和多样性显着相关,这表明ARG的发生和分散性可能会通过MGE在不同细菌之间传递。我们的结果为淡水环境中ARG的自然历史提供了新的观点,对于理解暂时性的基因和ARG的传播至关重要。
生态系统对气候变化的反应很复杂。为了预测生态系统动力学,我们需要有关过去物种丰度变化的高质量数据,这些数据可以为基于过程的模型提供信息。沉积古代DNA(SED ADNA)已彻底改变了我们记录过去Ecosyss-Tems动态的能力。与微化石(花粉,孢子)相比,它提供了增加分类学分辨率的时间序列,并且通常可以提供物种水平的信息,尤其是对于过去的血管植物和哺乳动物丰度。时间序列的信息比当代空间分布信息更丰富,这些信息传统上被用来训练模型来预测生物多样性和生态系统对气候变化的反应。在这里,我们概述了SED ADNA对预测生态系统变化的潜在贡献。我们展示了如何量化生物系统动力学中生物相互作用的效果的物种级时序列,并在可用的地点密集网络可用时用于估计分散率。通过结合古时间系列,基于过程的模型和逆模型,我们可以恢复生态系统动力学基础的生物和非生物过程,这些过程传统上非常具有挑战性。由SED ADNA告知的动态模型可以进一步用于推断超出当前动态,并提供对未来气候变化的生态系统响应的强大预测。本文是主题问题的一部分,“生态新颖性和行星管理:转化生物圈中的生物多样性动态”。