马萨诸塞湾处置场 马萨诸塞湾处置场经常用于处置波士顿地区各个港口的底部沉积物。每年约有 300,000 立方英尺的合适沉积物(适用性由项目特定评估和既定的机构间审查流程确定)沉积在该地点。该地点通过美国陆军工程兵团处置区监测系统 (DAMOS) 计划进行监测。DAMOS 研究表明,该地点是一个低能量环境,因此沉积在此位置的沉积物将保留在场地边界内。DAMOS 监测还显示,该地点形成了明显的疏浚材料堆。处置场内沉积物的金属和有机物含量通常高于背景水平,表明利用该场地的疏浚区域的工业性质。未发现处置场沉积的沉积物对处置场外区域产生影响。环境保护局已指定马萨诸塞湾处置场可用于处置疏浚物
描述:深海沉积物中浮游有孔虫壳的稀土元素(REES)特征已广泛用于重建深水肿块的演变及其与海洋碳循环和全球气候的相互作用(Osborne等,2017,2017,Skinner等,2019)。在活的浮游有孔虫中,REE的浓度比从深海沉积物中提取的壳中的壳小约2-3个数量级,这意味着后者中Rees签名的成岩源。一个普遍接受的假设是,沉积物中的有孔虫壳涂有薄薄的Fe-Mn氧化物和/或有机物,导致REES显着富集(Roberts等,2012; Haley等,204)。该项目将使用高分辨率激光烧蚀ICP质谱法和单个浮游有孔虫壳的电子显微镜研究这种“成岩涂层”的起源。该项目将利用RV Falkor的2020年研究巡游期间收集的材料。使用远程操作的水下车辆对该材料进行采样,因此提供了来自独特保存的沉积物 - 水界面的样品,这对于研究REES在海洋中骑自行车至关重要。该项目的目的是将这些沉积物中孔隙水的地球化学与有孔虫壳涂层的地球化学联系起来。
本研究使用以下海滩沉积物和石油类型:沉积物混合物、砾石、原油浸油卵石、老化原油和乳化原油以及重油 A,油含量为 0.25% 至 2.0%(按质量计) 。这项研究证明了原型能够有效清洁受污染的海滩沉积物。清理后的海滩沉积物含有 0.00% 至 0.02% 的碳氢化合物。对于大多数油/沉积物组合来说,冷水清洗就足够了!含有重质燃油 A 的除外 重质燃油 A/沉积物组合需要热水清洗,并且通常需要第二次通过洗石机。该原型的产品流量已超过 16 吨/小时。
不可避免地,ECC 未来的地下水使用将对现有的含水层系统造成额外压力。因此,重新评估以前绘制的含水层、潜在地定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩之间的水力通道了解甚少,因此需要对冰川沉积物和基岩进行连续高分辨率地质测绘,以更好地理解和说明地质地层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于建立更好的 ECC 水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
不可避免地,未来在 ECC 中使用地下水将给现有的含水层系统带来额外的压力。因此,重新评估以前绘制的含水层、可能定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩层之间的水力通道了解甚少,因此需要对冰川沉积物和基岩层进行连续高分辨率地质测绘,以更好地理解和说明地质层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于更好地建立 ECC 的水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
本研究使用了以下海滩沉积物和碳氢化合物类型:沉积物混合物、砾石、原油卵石、老化原油和乳化原油以及重质燃料油 A,油含量为 0.25% 至 2.0%(按质量计)。这项研究证明了原型有效清理受污染海滩沉积物的能力。清理过的海滩沉积物中含有 0.00% 到 0.02% 的碳氢化合物。除重质燃料油 A 外,冷水清洗适用于大多数碳氢化合物/沉积物组合。重质燃料油 A/沉积物组合需要热水清洗,并且通常需要第二次经过岩石清洗机。该原型的产品流速已超过 16 吨/小时。
不可避免地,ECC 未来的地下水使用将对现有的含水层系统造成额外压力。因此,重新评估以前绘制的含水层、潜在地定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩之间的水力通道了解甚少,因此需要对冰川沉积物和基岩进行连续高分辨率地质测绘,以更好地理解和说明地质地层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于建立更好的 ECC 水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
作者:RD Finlay · 2020 · 被引用 96 次 — 海洋沉积物通过俯冲或构造力抬升进行再循环,伴随火山排气和玄武岩等富含基底的火成岩的喷发……
海洋生物膜是全球无处不在的表面相关微生物群落,由于其独特的结构和功能,引起了人们的关注。The aim of this study is to provide a comprehensive overview of the current scienti fi c understanding, with a speci fi c focus on naturally occurring bio fi lms that develop on diverse marine abiotic surfaces, including microplastics, sea fl oor sediments, subsurface particles, and submerged arti fi cial structures susceptible to biocorrosion and biofouling induced by marine bio fi LMS。本文介绍了有关海洋环境中这些表面相关微生物群落的多样性,结构,功能和动态的最新进展和发现,突出了它们的生态和生物地球化学维度,同时也是为了进一步研究海洋生物生物LMS的灵感。
海洋沉积物覆盖了地球表面的近75%,是有机碳全球最大的储层之一。微生物在海洋沉积物中有机物的分解中起主要作用。因此,这些微生物的活性可能会对局部和全球生物地球化学循环产生深远的影响。碳生物地球化学的一个主要问题是确定是什么控制有机物对微生物的可及性或生物利用度。尚不清楚微生物本身是否最终控制降解率,还是主要取决于化合物的化学和物理性质和/或沉积设置和沉积物组成。在本演讲中,我将使用新型的同位素方法专注于对有机物降解动态的新见解,并探讨微生物代谢潜力和相互作用如何影响现代和古老海洋中的碳动员。