大型木质材料对水质改善的一项重大贡献是它可以捕获细小的沉积物和污染物的能力。当水流过木质结构时,悬浮的沉积物沉降,降低浊度并沉积任何可能粘附在沉积物颗粒上的污染物(例如,磷,重金属)(Ongley等人1992)。 当污染物具有凝聚力和沉降时,其影响水化学的能力会降低,从而使它们对水生生物有害。 此外,木材的多孔性质充当天然过滤器,捕获诸如重金属,多余的养分和有机化合物等污染物。 木质血管在木材内的孔隙率的直径各不相同,有些足够小,可以捕获大肠杆菌和其他潜在有害细菌等微生物(Ramchander等人(Ramchander等) 2021)。1992)。当污染物具有凝聚力和沉降时,其影响水化学的能力会降低,从而使它们对水生生物有害。此外,木材的多孔性质充当天然过滤器,捕获诸如重金属,多余的养分和有机化合物等污染物。木质血管在木材内的孔隙率的直径各不相同,有些足够小,可以捕获大肠杆菌和其他潜在有害细菌等微生物(Ramchander等人(Ramchander等)2021)。
[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
摘要淀粉酪蛋白琼脂(SCA)用于检测糖聚糖海洋细菌和主要是放线菌。放线菌是真菌样细菌,形成长长的细丝,延伸到土壤中。它们是革兰氏阳性的丝状和/或分支杆菌的大组。放线菌已经从陆地来源中分离出来,尽管几十年前出现了从海洋沉积物中回收的菌丝体形成放线菌的第一个报道。海洋沉积物是隔离新产品的新型放线菌的已知潜在来源,并被公认为是新型抗生素和抗癌剂的来源。放线菌通过分解和转化各种复杂的有机残留物,对环境产生广泛的影响。放线菌代表了在环境中发现的重要一组微生物,不仅在治疗应用中发挥了重要作用,而且在有机物的回收中也起着重要作用。
•与其他生态系统相比,湿地可以吸收和隔离数量的每单位面积碳,将大部分存储在沉积物中,而不是营养生物量中。估计表明,马萨诸塞州的湿地储存每英亩土壤有机碳是森林的六倍(EEA,2022年)。由于湿地长期保持缺氧条件,因此它们可以继续隔离碳数千年,从而产生厚厚的有机物层。相反,当湿地排干或降解土壤时,可能会发生快速的土壤碳丢失,并且在几十年内可以释放大量花费了几个世纪或千年的温室气体。虽然湿地沉积物中长期碳埋葬能力的估计值高度可变,但研究(McLeod等,2011)提出了以下速率:
碳酸盐(CACO3),该碳酸盐被海洋生物用于创建壳和骨骼。当这些生物死亡时,它们的遗体落在海底,形成石灰石和其他碳酸盐岩。3。俯冲和火山主义:构造过程导致其中一些碳酸盐沉积物为
调查显示,卡拉尼什的沉积物由分选不良的中质粉砂和一层薄薄的砂质粘土组成,粉砂被归类为“环潮细砂”,碳氢化合物和金属浓度略高于背景水平,这被认为表明存在历史钻探活动。该地区有许多凹陷处有高细砂,但没有一个是附件一中甲烷衍生的自生碳酸盐,而 Scanner Pockmark SAC 距离卡拉尼什 33 公里。物种表明粉砂沉积物主要包括环节动物(多样性和成分占主导地位)、软体动物、甲壳类动物和棘皮动物,包括海蛇尾。存在带有洞穴和土丘的严重生物扰动基质,表明可能存在被 OSPAR 列入受威胁或正在减少的栖息地“海上围栏和穴居巨型动物群落”和被 OSPAR 列入正在减少的海洋蛤蜊,并且该保护区位于卡拉尼什以东 56 公里的挪威边界沉积物计划自然保护海洋保护区内。
在本研究中,研究人员从渤海河口沉积物中开发出一种富集培养物,发现菌株W不仅能在高盐度条件下(5.1%NaCl)生存,而且能够茁壮成长,将有毒的1,2-二氯乙烷分解成无害的乙烯。
使用标准板数,分析性的,全细菌的社区分析和DNA测序技术评估了尼日利亚Akwa Ibom州Iko River河口沉积物的摘要微生物丰度,多样性和物理化学。总昆虫细菌的总范围为2.1×10 6到3.6×10 6 CFU/g,硫酸盐还原细菌(SRB)从2.1×10 1 CFU/g到4.1×10 1 CFU/g。培养依赖性分析表明,枯草芽孢杆菌,kleibsiella sp,铜绿假单胞菌和P.粉末是最丰富的物种(100%)。宏基因组分析表明,对细菌种类的门杆菌和酸性杆菌的计数分别最高和最低。这两个顶点被未知的生物体占据,读数为582.0(33.88%)和562(33.26%)。沉积物中最著名的细菌是硫果尖,菲氏菌20.0(1.36%),富西科克杆菌15.0(1.02%),噻aniomicrospira chilensis 13.0(0.88%)和硫磺菌13.0(0.88%)(0.88%)。物理化学分析显示,上游沉积物pH(6.20),(6.40)中游,(6.50)下游,温度(上游28 o C)和下游电导率(130µsscm -1)略有下降。Iko河河口沉积物中丰富的有机物和微生物种群为商业和生态上重要的动植物提供营养和利基。这些数据可能在未来的生态评估,监测和评估尼日尔三角洲