统一专利法院 (UPC) 自 2023 年 6 月 1 日成立以来,已审理了许多侵权诉讼。迄今为止,大多数诉讼都依赖于字面侵权。UPC 非常重视根据权利要求的技术功能对权利要求进行解释,这意味着默认采用“目的性构造”。然而,海牙地方分院 (HLD) 最近的一项裁决援引了基于荷兰测试的等同原则。我们回顾了这一决定,并讨论了其与 UPC 之前的侵权诉讼的相关性。直接和间接侵权统一专利法院协议 (UPCA) 考虑直接侵权(UPCA 第 25 条)和间接或共同侵权(UPCA 第 26 条)。到目前为止,大多数案件都涉及直接侵权。然而,在 Hand Held Products v Scandit 一案中,慕尼黑地方审判庭 (MLD) 在批准初步禁令时认为,由于 Scandit 提供的软件开发工具包是该发明“与基本要素有关的手段”,客户可以使用它来生产所要求保护的条形码扫描设备,从而将该发明付诸实施,因此很可能存在共同侵权。 通过目的性构造侵权 正如我们在最近一篇题为“UPC 无效性”的文章中讨论的那样,UPC 确定每个术语的技术含义并确定所要求保护的发明所要解决的潜在问题,因此实际上应用了对相关权利要求的目的性构造。 权利要求特征必须始终根据整个权利要求来解释(VusionGroup v Hanshow Technology),并且必须始终使用说明书和附图作为解释权利要求的辅助手段(Nanostring v 10x Genomics)。在 Edwards v Meril 案中,MLD 考虑了一种心脏瓣膜支架,其“侧支柱相对于流动轴平行”。MLD 的结论是,“平行”一词不能从严格的数学意义上理解,因为图形显示略微凹陷的形状是可能的,并且不会破坏专利中解释的技术效果:与流动方向的对齐在瓣膜压接时不会改变。因此,“平行”一词被有目的地解释。 等同侵权 在 Plant-e v Arkyne 案中,HLD 近期作出了第一项关于等同侵权的判决。权利要求涉及一种燃料电池,该燃料电池使用微生物氧化化合物作为燃料并产生能量。这种燃料电池在本领域中被称为微生物燃料电池 (MFC)。涉案专利教导了添加植物通过光合作用持续提供化合物,以减少对外部燃料的需求。该产品被命名为植物-MFC (P-MFC)。图 1 的改编版本如下图左所示:
摘要:土壤盐度是一种主要的非生物压力,它极大地阻碍了植物的生长和发育,从而降低了农作物的产量和生产力。作为全球最消耗的蔬菜之一,西红柿(Solanum lycropersicum L.)在人类饮食中起关键作用。当前的研究旨在探索两个番茄品种(里奥格兰德和阿格塔)的差异耐受水平。为此,在100 mM NaCl治疗两周后评估了各种生长,生理和生化属性。获得的发现表明,尽管盐应力的影响包括芽的干重和根部的干重和相对生长速率以及总叶面积的显着减少,但对于这两种品种来说,与Agata品种相比,Rio Grande的表现更好。此外,尽管暴露于盐胁迫,但里奥格兰德(Rio Grande)还是能够通过脯氨酸的积累来保持足够的组织水合和每个面积(LMA)的高叶子质量。然而,Agata品种的相对水含量,LMA和脯氨酸含量明显降低。同样,总叶叶绿素,可溶性蛋白和总碳水化合物显着降低。而在两个品种的盐胁迫下,丙二醛显着积累。此外,相对于里奥格兰德品种而言,这种负面影响对于Agata来说更为明显。总体而言,当前的研究提供了证据,表明在早期生长阶段,里奥格兰德比Agata品种更容易耐盐。因此,里奥格兰德的品种可能构成包括盐耐盐的番茄育种计划的好候选人,强烈建议番茄种植者,尤其是在受盐影响的田间中。
使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
摘要:种子质量是物种繁殖的重要特征。在这种情况下,Cenostigma pyramidalis 对于恢复退化地区具有重要特性。然而,由于它生长在卡廷加,这种物种更容易受到植物病原体的感染。因此,在种植前后处理其种子以防止真菌的发生非常重要。这些替代方法之一是使用硅,它有助于提高活力和控制疾病。在这种情况下,目标是评估不同来源的硅在控制与 C. pyramidalis 种子相关的天然真菌及其生理质量方面的作用。实验在巴西帕拉伊巴联邦大学阿雷亚校区 II 的植物病理学实验室进行。种子在经过划痕处理以克服休眠后,用以下物质处理:T1 - 对照;T2 - Captana,T3 - Agrosilício plus®;T4 - Rocksil®;T5 - Sifol®; T6 - Chelal®;T7 - Bugram®。实验采用完全随机设计。对种子进行卫生、发芽和出苗测试。发芽和出苗测试中,每个处理使用 100 粒种子,重复 4 次,每次 25 粒种子;健康测试中,每个处理使用 10 次,每次 10 粒种子。所有硅源均能有效控制 C. pyramidalis 种子中的曲霉菌、枝孢菌和青霉菌。建议使用 Sifol® 进行处理,以控制真菌的发生率,而不会影响种子的生理质量。
灯具从荧光灯向发光二极管(LED)的过渡促使植物生物技术中的当前实践重新评估。农业 - IUM介导的转化对于大豆(甘氨酸最大)中的基因工程和基因组编辑至关重要。大豆转化的临界共培养步骤发生在光条件下。当前用于大豆转化中共培养的方案缺乏光强度的标准。在本研究中,目的是研究共培养过程中光强度对大豆转化效率的影响。在共培养的五天内实现了五种光强度:50、100、150、190μmol m-2 s-1的白色LED之外,除了荧光100μmolm-2 s-1外。共培养后,所有外植体在均匀条件下以选择压力,生根和适应性进行了芽感应和伸长。分别使用两个可选标记HPPDPF-4PA和BAR进行了实验,研究了潜在的光效应是否由于标记相关途径而变化。植根于体外植物的阳性PCR分析,在两个可选标记物中都在所有光处理中都达到了成功的转化事件,范围为2.4%至6.9%。在共同培养过程中增加LED光强度会导致两个可选标记之间的不同转化效率。在亮舌蛋白选择下的处理中未检测到转化效率的差异。结果表明,在共培养过程中增加光强度导致芽再生在4-羟基苯基 - 丙酮酸二氧酶(HPPD)抑制剂的选择下的变化效率。此外,当使用HPPD抑制剂发生选择时,在100μmolm-2 s-1处的荧光光和白色LED之间也观察到转化效率的变化。结果突出了研究光对转化效率的影响的智能和潜在应用。
Amprion,美国加利福尼亚州圣地亚哥(和MSC,C M闪光MSC,医疗中心德国哥廷根Paracels- Elena-Klinik,Kassel,停车与运动障碍,神经病学博士学位,F Valley MD博士,M J Martin PhD和Account MD博士学位); Idibaps,Ciberned,Ern-Rnd,神经局临床研究所。 M J Martin和Count);部门和生理学,美国纽约州神经学系(教授MSC系,K Blennow教授医学博士,H Zeterberg教授医学博士神经病学系Amprion,美国加利福尼亚州圣地亚哥(和MSC,C M闪光MSC,医疗中心德国哥廷根Paracels- Elena-Klinik,Kassel,停车与运动障碍,神经病学博士学位,F Valley MD博士,M J Martin PhD和Account MD博士学位); Idibaps,Ciberned,Ern-Rnd,神经局临床研究所。 M J Martin和Count);部门和生理学,美国纽约州神经学系(教授MSC系,K Blennow教授医学博士,H Zeterberg教授医学博士神经病学系
*相应的作者的电子邮件:karimah.m@umk.edu.my; gunavathy@lincoln.edu.my Chilli Pepper是最重要的经济作物之一。但是,蒽(Colletotrichum spp。)是影响辣椒质量和产量的最具破坏性的真菌疾病之一。有必要通过使用天然和环保方法从种子(初始)阶段开始在所有生长阶段控制这种真菌感染。实验室和盆栽研究,以评估用1-脱氧基因霉素(1- DNJ)桑s植物膜对种子发芽,植物生长和蒽糖发育的涂层膜的疗效。1-DNJ Mulberry叶提取物涂料的水平为1、2、3和4%。此外,应用了1%Thiram杀菌剂的阳性对照,以及1-DNJ和Thiram应用的阴性对照。结果表明,用仙人掌提取物感染了炭疽糖的涂料辣椒种子,在处理2、3和4%的桑树叶提取物涂层中,发芽率显着提高了80%以上的发芽率。与正面和阴性对照相比,在种子涂有种子涂有种子的种子涂层的处理中,种子涂有种子的处理中,辣椒植物的生长参数,根长度和芽高明显更大。观察到辣椒幼苗新鲜重量的类似结果,在2%桑叶提取物中,芽新鲜重量是最高的。这些结果清楚地表明,桑叶提取物(1-DNJ)具有抑制colletotrichum spp的潜力。并提高辣椒种子质量。因此,可以将2%桑叶提取物(1-DNJ)作为疾病感染的辣椒种子的涂料配方。关键字:蒽糖疾病,1-脱氧霉素霉素,Colletotrichum spp。,Morus alba L.提取物,种子涂料辣椒辣椒是正在全世界种植和食用的重要商业作物之一。全球耕种和商业化大约有400种不同的辣椒。最受欢迎的品种是Capsicum Annuum L.(Chaudary等人2006)。但是,辣椒作物总是容易出现害虫和疾病攻击。有许多疾病会影响辣椒植物并造成重大产量损失。通常影响辣椒作物的真菌疾病是蒽,尾孢子(Frogeye)叶点,唐尼霉菌,镰刀菌腐烂,镰刀菌,富沙氏菌,疫霉病和白粉病(Hussain and Abid 2011)。即使通过化学施用,最困难的疾病之一是炭疽病。炭疽病是热带和亚热带国家辣椒产量的主要限制,造成巨大的损失。
摘要Rapeseed是全球重要性的作物,但有必要扩大可用于解决育种目标的遗传多样性。受基因组支持支持的辐射诱变有可能取代基因组敲除和拷贝数增加的基因组编辑,但是缺乏对放射治疗的分子结果的详细知识。为了解决这个问题,我们制作了一个基因组重新测序的1133 m 2一代菜籽植物的面板,并分析了大规模缺失,单核苷酸变体和小插入 - 影响基因开放式阅读框架的缺失变体。我们表明,高辐射剂量(2000 Gy)是耐受性的,γ辐射和快速中子辐射具有相似的影响,并且从某些植物的基因组中删除的片段被其兄弟姐妹遗传为其他副本,从而使基因剂量减少。与具有较大基因组的物种相关性,我们表明,也可以使用转录组重新测序来检测这些大规模影响。为了测试该方法的预测性改变油脂肪酸组成的效用,我们产生了bna.fae1的拷贝数减少和增加的线条,并确认了对灰烬酸含量的预期影响。我们检测并测试了预计将废除BNA.FAD2的21碱基缺失。a5,为此,我们确定了预测的种子油多不饱和脂肪酸含量的降低。我们对辐射诱变的分子作用的提高理解将是基因组学主导的方法,以更有效率地将新型遗传变异引入该作物的繁殖,并为预测其他作物提供了一个典范。
本摘要探讨了坦桑尼亚农民对高粱种子产品的要求,作为CGIAR和NARES关于种子产品市场细分和目标产品概况设计(TPPS)的讨论的投入。我们采用了一种新颖的方法来识别需求 - 基于Video的产品概念测试(VPCT)。通过与育种者,农民和工业的多次交往,我们确定了七个高粱种子产品概念,五个针对最终使用,饲料,饲料和食物,工业麦芽,食品和饲料,草料;农作物系统的一个概念 - 间培根;和一种靶向材料类型 - 杂化。我们从Dodoma和Shinyanga地区采样了1,100名农民,每个农民都评估并对三个概念进行了评估。农民最有可能选择了混合概念作为他们最喜欢的概念,其次是家庭使用概念。基于这些结果,我们提出了一项关于坦桑尼亚当前市场细分市场和TPP的修订的建议,这是东非最大的高粱生产商。
摘要目的:标准化基于激素的种子涂料制剂的剂量,以增强香菜种子的发芽和幼苗生长。研究设计:完全随机的设计。研究地点和持续时间:印度哥印拜陀泰米尔纳德邦农业大学种子科学技术系。方法论:香菜种子用不同浓度的基于激素的种子涂料聚合物涂覆,并以四种复制的滚动毛巾法进行了发芽研究。结果:基于激素的种子涂料配方的发芽率%(69%),根长度(16.75厘米),芽长(7.9厘米),干物质产量(0.058 g/10幼苗),活力指数I(1706)和II(1706)和II(3.9)和10g Polymer/kg polymer/kg polymer/kg of Seed exeed of Edeepy of Seedeed of Seed和290ml and 290ml。结论:用10克激素的种子涂料制剂溶解在290 mL水中的种子涂层增强了种子发芽和幼苗生长关键词:[Coriandrum sativum,种子涂料,剂量,剂量,发芽,活力] 1。引言Coriandrum sativum属于家庭apiaceae。它通常被称为香菜,也是印度最重要的香料作物之一。它的叶子用于烹饪目的[1]。它是在全球培养的,用于种子,叶子用作种子被用作香味果实和调味剂[2]。香菜具有广泛的药用特性,包括催眠,抗焦虑,抗惊厥作用,安替尼德剂。它还可以增强记忆力,进展,口头运动障碍,并提供抗菌,神经保护性,抗真菌和驱虫剂益处。此外,香菜表现出杀虫剂,抗氧化剂,抗炎,降低性,心血管,抗糖尿病和镇痛特性[3]。种子的增强是指收获后治疗,这对于播种时的发芽改善,幼苗的生长和缓解种子的递送至关重要[4]。种子涂层被认为是通过增强种子的生理和物理品质来促进可持续农业的有效方法。此过程有助于提高种植效率,提高生长参数,并减轻非生物胁迫和生物应力[5]。