在这个充满环境挑战和可持续实践需求的时代,农业正处于关键的十字路口。对高效、环保解决方案的需求从未如此迫切。太阳能播种机器人的出现,是一项突破性的创新,有望改变农业格局。本介绍深入探讨了这项革命性技术的起源、功能和潜在影响。太阳能播种机器人背后的想法源于多种因素的融合:对提高农业生产力的需求不断增长、减少农业体力劳动的必要性以及采用可再生能源的紧迫性。从这些挑战中汲取灵感,一支富有远见的工程师团队开始了一段旅程,以创造一种将自动化与可持续性相结合的解决方案。
32 头牛:19 头猪;1 10 英寸。福特弗格森拖拉机;1 8 英寸。福特弗格森拖拉机;1 14 英寸。福特弗格森 2 号犁:福特弗格森除草机;福特弗格森平地机;福特弗格森耕耘机;福特弗格森耕耘机;布拉德利粪肥撒播机;布拉德利花园拖拉机、犁和耕耘机:布拉德利侧送耙,使用 1 年;3 辆拖车;Vac-A-Way 种子和谷物清洁器;谷物条播机:谷物投标人:割草机:Case 脱粒机;玉米捆扎机;Appleton 玉米剥壳机;干草装载机; 2 辆农用货车;Sears Hammer King 磨坊;圆盘:^pringtooth DRAG;带马达的玉米剥壳机;尖齿拖拉机:BUZZ SAW;牛舍。^ew;国际卡车;自卸刮刀;2 个育雏炉,500 只雏鸡大小:1 个新的炉顶篷;60 加仑。大锅和夹套;2 个鱼叉干草叉;1 个抓钩叉:130 英尺新干草绳;110 英尺绳,使用过 3 个 scasan;绊绳;- Vfards CREAhl 分离器,带马达;空气压缩机;手推车草播种机;小提琴播种机;2 个柱洞挖掘机;1800 蒲式耳。小麦;玉米箱;2000 包麦秸;5 吨捆干草;车间工具和手动工具;其他物品不胜枚举。
32 头牛:19 头猪;1 台 10 英寸福特弗格森拖拉机;1 台 8 英寸福特弗格森拖拉机;1 台 14 英寸福特弗格森 2 博洛姆犁:福特弗格森除草机;福特弗格森平地机;福特弗格森中耕机;福特弗格森收割机;布拉德利粪肥撒播机;布拉德利园艺拖拉机、犁和中耕机:布拉德利侧送耙,使用 1 年;3 辆拖车;Vac-A-Way 种子和谷物清洁器;谷物条播机:谷物投标人:割草机:Case 脱粒机;玉米捆扎机;Apleton 玉米剥壳机;干草装载机;2 辆农用货车;Sears Hammer King 磨坊;圆盘:^pringtooth DRAG;带马达的玉米剥壳机;尖齿拖拉机:圆锯;牲畜饲养机。^ew;国际卡车;自卸刮刀;2 个育雏炉,500 只雏鸡大小:1 个新的炉子天篷;60 加仑大锅和夹套;2 个鱼叉干草叉;1 个抓钩叉:130 英尺新干草绳;110 英尺绳,使用过 3 个 scasan;绊绳;- Vfards CREAhl 分离器,带马达;空气压缩机;手推车草播种机;提琴播种机;2 个柱洞挖掘机;1800 蒲式耳小麦;玉米箱;2000 包小麦秸秆;5 吨打包干草;车间工具和手动工具;其他文章不胜枚举。
32 头牛:19 头猪;1 台 10 英寸福特弗格森拖拉机;1 台 8 英寸福特弗格森拖拉机;1 台 14 英寸福特弗格森 2 博洛姆犁:福特弗格森除草机;福特弗格森平地机;福特弗格森中耕机;福特弗格森收割机;布拉德利粪肥撒播机;布拉德利园艺拖拉机、犁和中耕机:布拉德利侧送耙,使用 1 年;3 辆拖车;Vac-A-Way 种子和谷物清洁器;谷物条播机:谷物投标人:割草机:Case 脱粒机;玉米捆扎机;Apleton 玉米剥壳机;干草装载机;2 辆农用货车;Sears Hammer King 磨坊;圆盘:^pringtooth DRAG;带马达的玉米剥壳机;尖齿拖拉机:圆锯;牲畜饲养机。^ew;国际卡车;自卸刮刀;2 个育雏炉,500 只雏鸡大小:1 个新的炉子天篷;60 加仑大锅和夹套;2 个鱼叉干草叉;1 个抓钩叉:130 英尺新干草绳;110 英尺绳,使用过 3 个 scasan;绊绳;- Vfards CREAhl 分离器,带马达;空气压缩机;手推车草播种机;提琴播种机;2 个柱洞挖掘机;1800 蒲式耳小麦;玉米箱;2000 包小麦秸秆;5 吨打包干草;车间工具和手动工具;其他文章不胜枚举。
32 头牛:19 头猪;1 台 10 英寸福特弗格森拖拉机;1 台 8 英寸福特弗格森拖拉机;1 台 14 英寸福特弗格森 2 博洛姆犁:福特弗格森除草机;福特弗格森平地机;福特弗格森中耕机;福特弗格森收割机;布拉德利粪肥撒播机;布拉德利园艺拖拉机、犁和中耕机:布拉德利侧送耙,使用 1 年;3 辆拖车;Vac-A-Way 种子和谷物清洁器;谷物条播机:谷物投标人:割草机:Case 脱粒机;玉米捆扎机;Apleton 玉米剥壳机;干草装载机;2 辆农用货车;Sears Hammer King 磨坊;圆盘:^pringtooth DRAG;带马达的玉米剥壳机;尖齿拖拉机:圆锯;牲畜饲养机。^ew;国际卡车;自卸刮刀;2 个育雏炉,500 只雏鸡大小:1 个新的炉子天篷;60 加仑大锅和夹套;2 个鱼叉干草叉;1 个抓钩叉:130 英尺新干草绳;110 英尺绳,使用过 3 个 scasan;绊绳;- Vfards CREAhl 分离器,带马达;空气压缩机;手推车草播种机;提琴播种机;2 个柱洞挖掘机;1800 蒲式耳小麦;玉米箱;2000 包小麦秸秆;5 吨打包干草;车间工具和手动工具;其他文章不胜枚举。
32 头牛:19 头猪;1 台 10 英寸福特弗格森拖拉机;1 台 8 英寸福特弗格森拖拉机;1 台 14 英寸福特弗格森 2 博洛姆犁:福特弗格森除草机;福特弗格森平地机;福特弗格森中耕机;福特弗格森收割机;布拉德利粪肥撒播机;布拉德利园艺拖拉机、犁和中耕机:布拉德利侧送耙,使用 1 年;3 辆拖车;Vac-A-Way 种子和谷物清洁器;谷物条播机:谷物投标人:割草机:Case 脱粒机;玉米捆扎机;Apleton 玉米剥壳机;干草装载机;2 辆农用货车;Sears Hammer King 磨坊;圆盘:^pringtooth DRAG;带马达的玉米剥壳机;尖齿拖拉机:圆锯;牲畜饲养机。^ew;国际卡车;自卸刮刀;2 个育雏炉,500 只雏鸡大小:1 个新的炉子天篷;60 加仑大锅和夹套;2 个鱼叉干草叉;1 个抓钩叉:130 英尺新干草绳;110 英尺绳,使用过 3 个 scasan;绊绳;- Vfards CREAhl 分离器,带马达;空气压缩机;手推车草播种机;提琴播种机;2 个柱洞挖掘机;1800 蒲式耳小麦;玉米箱;2000 包小麦秸秆;5 吨打包干草;车间工具和手动工具;其他文章不胜枚举。
1。注意土壤类型(Droughty,Wet等)2。土壤测试并在耕作前施加生育能力。石灰。3。在准备土地之前控制多年生杂草。4。为土壤类型,牲畜和营销需求以及收获管理选择适当的混合物。5。确定您当地的理想播种时间。(冬季末至初春或夏末通常是理想的。)6。准备一个水平,牢固的苗床,或者如果不采用任何耕作,请在播种之前用适当的非残基除草剂播种。7。校准播种机以获得适当的播种速率和深度。a。我们的混合物在大盒子中最有效。b。打电话给校准表。需要在较小的距离内收集并称重种子以确定播种速率。c。在1/8至1/4英寸处种子,表面约有10%的种子。d。压力轮和/或培养基对良好的播种至关重要。如果条件干燥,培养两次是非常有益的。
[9]“ Agribot无人机:印度的第一台DGCA型认证农业无人机-Iotechworld”,Iotechworld-我们从事农业,调查,监视,无人机物流领域,2024年1月16日。 https://iotechworld.com/indian-government-prast-first-rone-drone-grone-agribot-uav-drone/。[10] R. Koerhuis,“自主播种机和种植者项目”,未来耕作,Jun.10,2021.https:///www.futurefarming.com/tech-inmous-seeder-seeder-seeder-seeder-seeder-and-planter-projects/ [11]农业,12月28,2020.https://www.futurefarming.com/tech-inch-in-focus/moondino-rice-paddy-paddy-robot-for- for-自动weeding/。[12] V. Vorotnikov,“新的俄罗斯农业机器人正在追踪实地试验”,Future Farming,Jun。2021。https://www.futurefarming.com/tech-in-focus/new-russian-agricultural-robot-is-is-is-is-track-track-to-field- triel- trib- trial- [13] S. [在线]。 可用:https://www.inc.com/sonya-mann/blue-river-technology-ai.html。 [14] P. Hill, “Robotriks autonomous platform is low-cost farm assistant,” Future Farming, Jan. 04, 2021. https://www.futurefarming.com/tech-in-focus/robotriks-autonomous-platform-is-low-cost-farm- assistant/ [15] Y. Onishi, T. Yoshida, H. Kurita, T. Fukao,H。Arihara和A. Iwai,“使用深度学习的自动化水果收获机器人”,Robomech Journal,第1卷。 6,不。 1,2019年11月1日,doi:10.1186/s40648-019-0141-2。2021。https://www.futurefarming.com/tech-in-focus/new-russian-agricultural-robot-is-is-is-is-track-track-to-field- triel- trib- trial- [13] S.[在线]。可用:https://www.inc.com/sonya-mann/blue-river-technology-ai.html。[14] P. Hill, “Robotriks autonomous platform is low-cost farm assistant,” Future Farming, Jan. 04, 2021. https://www.futurefarming.com/tech-in-focus/robotriks-autonomous-platform-is-low-cost-farm- assistant/ [15] Y. Onishi, T. Yoshida, H. Kurita, T. Fukao,H。Arihara和A. Iwai,“使用深度学习的自动化水果收获机器人”,Robomech Journal,第1卷。6,不。1,2019年11月1日,doi:10.1186/s40648-019-0141-2。
Bowen等。 (2022)在澳大利亚昆士兰州穆尔加(Mulga)土地上建立肉牛物业的弹性的机会。 《牧场期刊》 44.2:115-128。 Bowman,D.M.,Murphy,B。P.,Neyland,D.L.,Williamson,G。J.,&Prior,L。D.(2014)。 突然的火力变化可能会导致范围内的较底部底漆森林的损失。 Global change biology, 20(3), 1008–1015 https://doi.org/10.1111/gcb.12433 Braden J, Mills CH, Cornwell WK, Waudby HP, Letnic M (2021), Impacts of grazing by kangaroos and rabbits on vegetation and soils in a semi-arid conservation reserve Journal of Arid Environments, Volume 190. Briggs,S。等。 (2008)澳大利亚东南部内陆集水区的围栏和未发放的残留植被的状况。 澳大利亚植物学杂志56.7:590-599。 Brown,R。F.(1985)。 年轻的穆尔加(Acacia aneura F. Muell)树木在不同水平的放牧下的生长和存活。 《牧场日报》,第7(2)期,143-148。 BüchiL,Wendling M,AmosséC。,Necpalova M和Charles R(2018)'覆盖作物在减轻土壤耕作减少的负面影响和促进冬小麦种植系统中的负面影响方面的重要性”,农业,生态系统和环境,256:92-104。Bowen等。(2022)在澳大利亚昆士兰州穆尔加(Mulga)土地上建立肉牛物业的弹性的机会。《牧场期刊》 44.2:115-128。Bowman,D.M.,Murphy,B。P.,Neyland,D.L.,Williamson,G。J.,&Prior,L。D.(2014)。 突然的火力变化可能会导致范围内的较底部底漆森林的损失。 Global change biology, 20(3), 1008–1015 https://doi.org/10.1111/gcb.12433 Braden J, Mills CH, Cornwell WK, Waudby HP, Letnic M (2021), Impacts of grazing by kangaroos and rabbits on vegetation and soils in a semi-arid conservation reserve Journal of Arid Environments, Volume 190. Briggs,S。等。 (2008)澳大利亚东南部内陆集水区的围栏和未发放的残留植被的状况。 澳大利亚植物学杂志56.7:590-599。 Brown,R。F.(1985)。 年轻的穆尔加(Acacia aneura F. Muell)树木在不同水平的放牧下的生长和存活。 《牧场日报》,第7(2)期,143-148。 BüchiL,Wendling M,AmosséC。,Necpalova M和Charles R(2018)'覆盖作物在减轻土壤耕作减少的负面影响和促进冬小麦种植系统中的负面影响方面的重要性”,农业,生态系统和环境,256:92-104。Bowman,D.M.,Murphy,B。P.,Neyland,D.L.,Williamson,G。J.,&Prior,L。D.(2014)。突然的火力变化可能会导致范围内的较底部底漆森林的损失。Global change biology, 20(3), 1008–1015 https://doi.org/10.1111/gcb.12433 Braden J, Mills CH, Cornwell WK, Waudby HP, Letnic M (2021), Impacts of grazing by kangaroos and rabbits on vegetation and soils in a semi-arid conservation reserve Journal of Arid Environments, Volume 190.Briggs,S。等。(2008)澳大利亚东南部内陆集水区的围栏和未发放的残留植被的状况。澳大利亚植物学杂志56.7:590-599。Brown,R。F.(1985)。 年轻的穆尔加(Acacia aneura F. Muell)树木在不同水平的放牧下的生长和存活。 《牧场日报》,第7(2)期,143-148。 BüchiL,Wendling M,AmosséC。,Necpalova M和Charles R(2018)'覆盖作物在减轻土壤耕作减少的负面影响和促进冬小麦种植系统中的负面影响方面的重要性”,农业,生态系统和环境,256:92-104。Brown,R。F.(1985)。年轻的穆尔加(Acacia aneura F. Muell)树木在不同水平的放牧下的生长和存活。《牧场日报》,第7(2)期,143-148。BüchiL,Wendling M,AmosséC。,Necpalova M和Charles R(2018)'覆盖作物在减轻土壤耕作减少的负面影响和促进冬小麦种植系统中的负面影响方面的重要性”,农业,生态系统和环境,256:92-104。BüchiL,Wendling M,AmosséC。,Necpalova M和Charles R(2018)'覆盖作物在减轻土壤耕作减少的负面影响和促进冬小麦种植系统中的负面影响方面的重要性”,农业,生态系统和环境,256:92-104。
碳足迹(CF)可以是指导可持续食品生产系统的强大工具。本研究对CF进行了量化,并分析了跨农场类别的CF的可变性,以及旁遮普邦州大米和小麦生产的不同贡献投入。发现水稻的碳足迹比小麦(1.41吨Co 2 Eqha -1和0.28吨Co 2 Eqton -1)高得多(6.34吨Co 2 EQHA -1和0.91吨Co 2 EQ TON -1)。在不同的发射来源中,甲烷形成了主要份额(60.7%),然后是灌溉的免费电力(17.9%)(17.9%),n 2 O(10.8%),植物保护化学物质(7.5%),柴油(6.1%)和肥料(3%),而惠特(3%)则是wheat的主要燃料,含有N 2 o(41.3%)(41.3%)(41.3%(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%)(41.3%) (11.8%),电(10.6%)和化学物质(5.1%)。各个农场类别,肥料的份额(就农场(11.2%)和排放量(3.1)而言)仍然是边际农民的最大值,而大型农民则使用自由电力对温室气体排放量最大(18.5%)。,大米(95.5%)的农场排放量高于小麦(80.1%),因为在洪水泛滥的情况下培养了大米,导致甲烷排放。较高的非农场小麦排放的主要贡献者是肥料,尤其是P 2 O 5,然后使用柴油燃料和化学物质。这项研究强调了对农业投入的可持续管理的需求,这不仅会抵消相关的温室气体排放,还可以改善土壤健康。此外,对气候智能农业实践的认识以及获得DSR,激光升级和快乐种子等技术是确定农场和土地管理实践利用的关键因素,这些因素可能同时降低这些排放并提高农民的适应能力,从而提高粮食安全。