脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
水下图像细分对于诸如水下探索,海洋环境监测和资源开发等任务至关重要。尽管如此,鉴于水下环境的复杂性和可变性,改善模型准确性仍然是水下图像分割任务中的关键挑战。为了解决这些问题,本研究提出了基于标准Segformer模型的水下图像的高性能语义分割方法。首先,Segformer中的混合变压器主链被Swin Transformer替换,以增强特征提取并促进对全局上下文信息的有效获取。接下来,在骨干的下采样阶段和解码器中引入了有效的多尺度注意(EMA)机制,以更好地捕获多尺度特征,从而进一步提高了细分精度。此外,将特征金字塔网络(FPN)结构合并到解码器中,以在多个分辨率下组合特征图,从而使模型可以有效地集成上下文信息,从而在复杂的水下环境中增强了鲁棒性。对SUIM水下图像数据集进行测试表明,拟议的模型在多个指标上达到了高性能:联合(MIOU)的平均相交(MIOU)为77.00%,平均召回(MRECALL)为85.04%,平均精度(Mprecision)为89.03%,为89.03%,F1Score(MF1Score(Mf1score)为86.63%)。与标准Segformer相比,MIOU的提高3.73%,MRECALL为1.98%,Mprecision的3.38%和MF1Score的2.44%的提高,参数增加了989万。结果表明,所提出的方法通过最小的其他计算实现了出色的分割精度,从而显示了水下图像分割中的高性能。
1 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 51 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
Imen Nouira、Ramzi Hammami、Alina Fernandez Arias、Natacha Gondran、Yannick Frein。橄榄油供应链设计,包括有机和传统市场细分以及消费者对本地产品的偏好。国际生产经济学杂志,2022 年,247,第 108456 页。�10.1016/j.ijpe.2022.108456�。�emse-03592598�
高光谱成像为分析人工生态系统中地上植物的特征提供了强大的工具,能够提供涵盖不同波长的丰富光谱信息。本研究提出了一种高效的高光谱数据分割和后续数据分析流程,通过使用稀疏混合尺度卷积神经网络集成,最大限度地减少了用户注释的需求。分割过程利用集成的多样性,以最少的标记数据实现高精度,从而减少了劳动密集型的注释工作。为了进一步增强稳健性,我们结合了图像对齐技术来解决数据集的空间变异性问题。下游分析侧重于利用分割数据处理光谱数据,从而实现植物健康状况的监测。该方法为光谱分割提供了一种可扩展的解决方案,并有助于在复杂受控环境中对植物状况进行切实可行的洞察。我们的研究结果证明了将先进的机器学习技术与高光谱分析相结合,可以实现高通量植物监测。
© 作者 2025。开放存取 本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议授权,允许以任何媒体或格式进行任何非商业性使用、共享、分发和复制,只要您给予原作者和来源适当的信任、提供知识共享许可协议的链接并表明您是否修改了许可材料。根据此许可,您无权共享源自本文或本文部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料致谢中另有说明。如果材料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,您需要直接从版权所有者处获得许可。要查看此许可的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
开发神经退行性临时媒体的解剖学验证协议:,Winifred Trotman 3,Francisco Javier Romero Molina 5,JoséCarlosBlood 5,Jimenez Sea of Jimenez 5,Pillar Mars Rabal Mars Rabal 5,Prieto 5,Prieto 5,Ricardo 5,Ricardo insaul 5,Ricardo insaul 5,la la la la la la la la em em em em em em em em em。Wisse 7
磁共振 (MR) 图像分割是创建伪计算机断层扫描 (CT) 图像的一项关键任务,伪计算机断层扫描 (CT) 图像可用于实现正电子发射断层扫描 (PET) 衰减校正。创建伪 CT 图像的主要挑战之一是难以对脑 MR 图像中的骨组织进行准确分割。深度卷积神经网络 (CNN) 已被广泛而有效地应用于执行 MR 图像分割。这项工作的目的是提出一种分割方法,将多分辨率手工制作的特征与基于 CNN 的特征相结合,以添加方向属性并丰富用于执行分割的特征集。主要目标是有效地将大脑分割成三个组织类别:骨骼、软组织和空气。所提出的方法使用不同的机制将非下采样 Contourlet (NSCT) 和非下采样 Shearlet (NSST) 系数与 CNN 的特征相结合。计算熵值以选择最有用的系数并降低输入的维数。使用 50 张临床脑部 MR 和 CT 图像通过计算精度、召回率、骰子相似系数 (DSC) 和 Jaccard 相似系数 (JSC) 来评估分割结果。还将结果与文献中报道的其他方法进行了比较。骨骼类的 DSC 从 0.6179 ± 0.0006 提高到 0.6416 ± 0.0006。将 NSCT 和 NSST 的多分辨率特征与 CNN 的特征相加,显示出了令人鼓舞的结果。此外,NSST 系数比 NSCT 系数提供了更多有用的信息。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图4(a)在GT_DRAWEM和从T2W或T1W的SynthMotinh模型之间计算出的骰子分数的所有主题的分布,对于不同的结构。(b)从Synthmotinh模型预测计算出的GM体积的散点图。y轴预测是由T2W体积和T1W体积的X轴进行的。(c)跨不同方法的视觉观察的说明。地面真相标签(gt_drawem)以绿色显示,预测为红色。蓝色箭头指示与T1W图像有关GT的可见未对准区域。红色箭头指示预测中的局部错误。(d)预测GM标签(蓝色)和GM GT(橙色)中T1W和T2W图像强度的直方图。