TripAdvisor 想知道在其平台上推广会员资格是否能提高参与度和预订量。他们无法直接查看现有数据,比较会员和非会员,因为选择成为会员的客户恰恰是参与度最高的客户。他们也无法直接进行 A/B 测试,因为他们无法强迫用户注册成为会员。幸运的是,TripAdvisor 刚刚进行了一项实验,通过为随机子集的客户提供更简单的会员注册流程来探索用户留存率。
人工智能可以标准化和自动化高度要求的程序,例如手动策略,尤其是在像骨盆一样常见的解剖部位中。这项研究研究了女性和男性骨盆放射疗法(RT)的四种自动化序列工具(CT)图像,从基于ATLAS的简单和著名方法开始到最新的基于神经网络的算法。评估包括定量,定性和时间效率评估。回顾性地选择了一系列40个宫颈癌和40个前列腺癌结构集。在准备阶段后,每个站点的剩余20个测试集由基于Atlas的模型主食,一个基于森林的随机模型以及两个基于森林的模型以及两个基于深度学习的工具(DL),Mvision和Limbusai自动分割。将手动分割设置为地面真理,根据骰子相似性系数(DSC),Hausdorff距离(HD)和距离对验证部分(DAP)比较了200个结构集。自动分割和手动校正持续时间。专业临床医生进行了定性评估。在宫颈癌CTS中,DL的表现优于其他工具,具有较高的定量指标,定性得分和较短的校正时间。另一方面,在前列腺癌CT中,所有分析工具的性能在定量和定性指标方面都是可比的。减少分割时间可以减轻自动化工作流程中骨盆辐射疗法常规的负担。性能结果的这种差异可以通过宫颈癌的各种解剖学变异性在前列腺立体定位疗法(SBRT)中的严格膀胱和直肠填充制剂方面的广泛解剖变异性来解释。
摘要。磁共振成像 (MRI) 是最灵活、最强大的医学成像方式之一。然而,这种灵活性是有代价的;在不同位置和使用不同参数获取的 MRI 图像在对比度和组织外观方面表现出显著差异,导致在量化脑解剖结构或病理存在时出现下游问题。在这项工作中,我们建议将基于多参数 MRI 的静态方程序列模拟与分割卷积神经网络 (CNN) 相结合,以使这些网络对采集参数的变化具有鲁棒性。结果表明,当给定图像及其相关的物理采集参数时,CNN 可以产生对采集变化具有鲁棒性的分割。我们还表明,所提出的物理信息方法可用于桥接多中心和纵向成像研究,其中成像采集在站点或时间上有所不同。
典型的图像处理任务是识别两个相邻区域之间边界(强度变化)。从经典上讲,边缘检测方法依赖于不同类型的滤膜对图像梯度的计算。因此,所有经典算法都需要至少O(2 n)的计算复杂性,因为每个像素都需要处理(Yao,Wang,Liao,Chen和Suter,2017)。已经提出了一种量子算法,该算法应该与现有边缘提取算法相比提供指数加速(Zhang,lu和gao。2015)。但是,该算法包括一个复制操作和一个量子黑框,用于同时计算所有像素的梯度。对于这两个步骤,目前都没有有效的实现。提出了一种高效的量子算法,称为量子Hadamard Edge检测,以找到边界(Yao,Wang,
关于脑成像应用的研究有很多。马来西亚的统计数据显示,神经胶质瘤是脑瘤中最常见的疾病类型之一。神经胶质瘤脑瘤是脑组织内神经胶质细胞的异常生长,被称为脑组织。放射科医生通常使用磁共振成像 (MRI) 图像序列来诊断脑瘤。然而,放射科医生手动检查脑瘤诊断是一项困难且耗时的任务,因为肿瘤的形状和外观各不相同。他们还会注射钆造影剂来增强图像模态,这会给患者带来副作用。因此,本文提出了一种使用 Sobel 边缘检测和数学形态学操作对 MRI 脑图像进行自动分割和检测的方法。从脑瘤图像分割基准 (BRATS) 获得了总共 30 个神经胶质瘤 T1 加权 MRI 脑图像。使用区域重叠定量评估分割和检测的结果,准确率为 80.2%,表明所提出的方法很有前景。
提取和分析详细的视觉信息。传统的人工神经网络(ANN)在这一领域取得了长足的进步,但是尖峰神经网络(SNN)的能源效率和以生物为基础的基于时间的处理而引起了人们的关注。然而,由于限制,诸如量化误差和次优膜电位分布之类的局限性,现有的基于SNN的语义分割方法面临着高精度的挑战。这项研究介绍了一种基于尖峰 - 深板的新型尖峰方法,并结合了正则膜电位损失(RMP-loss)来应对这些挑战。建立在DeepLabv3体系结构的基础上,提出的模型通过优化SNN中的膜电位分布来利用RMP-loss来提高分割精度。通过优化膜电位的存储,其中仅在最后一个时间步骤存储值,该模型可显着减少内存使用和处理时间。这种增强不仅提高了计算效率,而且还提高了语义分割的准确性,从而可以对网络行为进行更准确的时间分析。提出的模型还显示出更好的稳健性,以防止噪声,在不同级别的高斯噪声下保持其精度,这在实际情况下很常见。所提出的方法在标准数据集上展示了竞争性能,展示了其用于节能图像处理应用的潜力
摘要 - 视觉细分试图将图像,视频帧或点云分段分为多个段或组。该技术具有许多现实世界的应用,例如自动驾驶,图像编辑,机器人传感和医学分析。在过去的十年中,基于深度学习的方法在这一领域取得了显着的进步。最近,Transformers是一种基于最初为自然语言处理的自我注意力的一种神经网络,在各种视觉处理任务中已经超过了以前的卷积或经常性方法。具体来说,视觉变压器为各种细分任务提供了强大,统一甚至更简单的解决方案。本调查提供了基于变压器的视觉细分的详细概述,总结了最近的进步。我们首先审查背景,包括问题定义,数据集和先前的卷积方法。接下来,我们总结了一个统一所有基于变压器的方法的元结构结构。基于此元结构结构,我们检查了各种方法设计,包括对元结构和相关应用程序的修改。我们还提供了几个特定的子字段,包括3D点云进行分割,基础模型调整,域感知分割,有效的分割和医疗分割。此外,我们在几个公认的数据集上编译并重新评估了所审核的方法。最后,我们确定了这一领域的公开挑战,并提出了未来研究的方向。项目页面可以在https://github.com/lxtgh/aweshy-sementation-with-transformer上找到。