心脏图像的分割是许多患者特定计算管道的可变组成部分,但其对模拟结果的影响仍未得到充分了解。探索赛车变异性影响的障碍是建立心室统计形状模型的技术挑战。在这项研究中,我们通过创建一个统一的形状模型(包括心外膜和eCardium),改善了以前的形状分析。我们在Shapeworks中测试了四种技术,以生成心室形状模型:标准,多体,混合,混合多域和地球距离。使用所有11个分割的多域和混合多域生成了形状模型,而Geodesic距离方法使用四个分段的子集生成了形状模型。每个形状模型在分段变异性的空间依赖性特征上,包括壁厚,环直径和基础截断。虽然三种方法中的每一种都有好处,但混合多域方法为最精确的形状模型提供了最少的点,并且在大多数应用中可能最有用。
摘要:通过几乎没有学习的可能性增强脑肿瘤分割的潜力是巨大的。虽然几个深度学习网络(DNN)显示出令人鼓舞的分割结果,但它们都采用了大量的培训数据,以产生适当的结果。此外,对于大多数这些模型而言,一个突出的问题是在看不见的课程中表现良好。为了克服这些挑战,我们提出了一个单次学习模型,以基于单个原型相似性评分来分割脑磁共振图像(MRI)上的脑肿瘤。使用最近开发的几乎没有弹药的学习技术,通过支持和查询图像进行训练和测试,我们试图通过专注于包含前景类别的切片来获取明确的肿瘤区域。与使用整个图像集的其他最近的DNN不同。该模型的训练是以迭代方式进行的,在每个迭代中,随机切片中包含前景类别的随机抽样数据的剪辑被选为查询集,以及与支持集的同一样本的不同随机切片。为了将查询图像与类原型区分开,我们使用了基于非参数阈值的基于公制的学习方法。我们采用了具有60次训练图像和350次测试图像的多模式脑肿瘤图像分割(Brats)2021数据集。使用平均骰子得分和平均得分评估模型的有效性。实验结果提供的骰子得分为83.42,比文献中的其他作品还要大。此外,所提出的单发分割模型在计算时间,内存使用情况和数据数方面优于常规方法。
海马体对学习和记忆至关重要,在生命早期会发生重大变化。研究海马结构和功能的发育轨迹需要一种精确的方法来从解剖 MRI 扫描中分割出该区域。尽管手动分割被视为“黄金标准”方法,但它既费力又主观。这推动了人们对成人自动分割方法的追求。然而,人们对这些自动化协议对婴儿的可靠性知之甚少,特别是当解剖扫描质量因头部运动或使用更短、更安静的婴儿友好型序列而降低时。在基于任务的 fMRI 协议中,我们收集了 42 个会话中的安静 T1 加权解剖扫描,这些会话针对年龄在 4 至 23 个月之间的清醒婴儿。两位专家追踪者首先手动分割了两个半球的海马体。得到的评分者间信度 (IRR) 仅为中等,反映了婴儿分割的难度。然后,我们使用了四种协议来预测这些手动分割:普通成人模板、普通婴儿模板、FreeSurfer 软件和海马子域自动分割 (ASHS) 软件。ASHS 生成了最可靠的婴儿海马分割,超过了专家的手动 IRR。因此,自动化方法可以为嘈杂的 T1 加权婴儿扫描提供稳健的海马分割,为探究早期海马发育开辟了新的可能性。
摘要。分析建筑模型的可用面积、建筑安全性或能源分析需要空间和相关对象的功能分类数据。自动化空间功能分类有助于减少输入模型准备工作量和错误。现有的空间功能分类器使用空间特征向量或空间连通性图作为输入。深度学习 (DL) 图像分割方法在空间功能分类中的应用尚未被研究。作为解决这一差距的第一步,我们提出了一个数据集 SFS-A68,它由 68 个公寓楼空间布局的数字 3D 模型生成的输入和地面真实图像组成。该数据集适用于开发用于空间功能分割的 DL 模型。我们使用该数据集训练和评估基于迁移学习和从头开始训练的实验空间功能分割网络。测试结果证实了 DL 图像分割对空间功能分类的适用性。
图像分割是数字图像处理和分析中的一种常见技术,它通常基于像素的属性将图像划分为多个区域或区域。脑肿瘤分割是医学图像处理中的一项关键任务。早期识别脑肿瘤可以增强治疗选择并增加患者的生存机会。从医疗中获得的大量 MRI 图像中进行脑部分割对于癌症诊断和其他脑部疾病来说是一项具有挑战性且耗时的任务。这就是为什么建立一个有效的自动图像分割系统对于诊断脑肿瘤和其他常见的神经疾病至关重要。本研究的目标是对基于 MRI 的脑肿瘤分割方法进行系统回顾。近年来,深度学习技术已被证明可用于自动分割并获得了突出地位,因为这些方法产生了更好的结果,因此比其他方法更适合这项任务。深度学习算法也可用于快速客观地处理大量基于 MRI 的图像数据。有许多关于传统基于 MRI 的脑肿瘤图像分割算法的综述论文。
摘要——我们提出了 Q-Seg,这是一种基于量子退火的新型无监督图像分割方法,专为现有量子硬件量身定制。我们将逐像素分割问题(吸收图像的光谱和空间信息)公式化为图形切割优化任务。我们的方法有效地利用了 D-Wave Advantage 设备的互连量子位拓扑,与现有量子方法相比具有出色的可扩展性,并且优于几种经过测试的最先进的经典方法。对合成数据集的实证评估表明,Q-Seg 的运行时性能优于最先进的经典优化器 Gurobi。该方法还在地球观测图像分割上进行了测试,这是一个具有噪声和不可靠注释的关键领域。在嘈杂的中尺度量子时代,与 Segment Anything 等先进技术相比,Q-Seg 成为现实世界应用的可靠竞争者。因此,Q-Seg 使用可用的量子硬件提供了一种有前途的解决方案,特别是在受到有限标记数据和高效计算运行时间的需求限制的情况下。
摘要 脑肿瘤是脑内异常组织的集合。当脑在颅骨区域内生长时,脑的正常功能可能会受到影响。脑肿瘤对于预防和治疗脑肿瘤对于改善治疗方案和患者生存率至关重要。使用手动方法对大量磁共振成像 (MRI) 图像进行癌症诊断是最复杂和最耗时的任务。脑肿瘤分割必须自动进行。本文提出了一种脑肿瘤分割策略。为此,基于区域和边缘对图像进行分割。本研究使用脑肿瘤分割 2020 (BraTS2020) 数据集。对使用基于边缘和基于区域的方法与带有 ResNet50 编码器架构的 U-Net 进行图像分割进行了比较分析。基于边缘的分割模型在所有性能指标上的表现都优于基于区域的分割模型,并且基于边缘的模型实现了 0.008768 的 Dice 损失分数、0.7542 的 IoU 分数、0.9870 的 f 1 分数、0.9935 的准确度、0.9852 的精确度、0.9888 的召回率和 0.9951 的特异性。关键词:脑肿瘤、卷积神经网络 (CNN)、边缘分割、区域分割、U-Net。
1 耶鲁大学医学院放射学和生物医学成像系,康涅狄格州纽黑文 06510 2 耶鲁大学医学院治疗放射学系,康涅狄格州纽黑文 06510 3 耶鲁大学医学院结果研究与评估中心,康涅狄格州纽黑文 06510 4 耶鲁大学医学院心血管医学部,康涅狄格州纽黑文 06510 5 耶鲁大学统计与数据科学系,康涅狄格州纽黑文 06511 摘要 简介:在脑图像上分割肿瘤周围的脑结构对于放射治疗和手术计划非常重要。当前的自动分割方法通常无法分割因肿瘤而扭曲的脑解剖结构。目的:开发和验证 3D 胶囊网络(CapsNets),该网络可以分割具有训练数据中未表示的新型空间特征的脑结构。方法:我们使用在一项多机构研究中获取的 3430 个脑部 MRI 开发、训练和测试了 3D CapsNets。我们使用多种性能指标将我们的 CapsNets 与 U-Nets 进行了比较,包括分割各种脑结构的准确性、分割具有训练数据中未表示的空间特征的脑结构的准确性、使用有限数据训练模型时的性能、内存要求和计算时间。结果:3D CapsNets 可以分割第三脑室、丘脑和海马,Dice 得分分别为 94%、94% 和 91%。3D CapsNets 在分割训练数据中未表示的脑结构方面优于 3D U-Nets,Dice 得分高出 30% 以上。与 3D U-Nets 相比,3D CapsNets 的模型也小得多,可训练参数减少了 93%。这使得 3D CapsNets 在训练过程中收敛速度更快,与 U-Nets 相比,它们的训练速度更快。这两个模型在测试过程中的速度一样快。结论:3D CapsNets 可以高精度地分割大脑结构,在分割具有训练期间未表示的特征的大脑结构方面优于 U-Nets,并且与 U-Nets 相比效率更高,在实现类似结果的同时,其规模却小了一个数量级。
从 MRI 扫描中分割皮层下结构是许多神经系统诊断中关注的问题。由于这是一项艰巨的任务,机器学习,特别是深度学习 (DL) 方法已被探索。大脑的结构复杂性要求大量高质量的分割数据集,以开发基于 DL 的良好皮层下结构分割解决方案。为此,我们发布了一组 114 个 1.5 特斯拉 T1 MRI 扫描,其中手动描绘了 14 个皮层下结构。数据集中的扫描来自健康的年轻(21-30 岁)受试者(58 名男性和 56 名女性),所有结构均由经验丰富的放射学专家手动描绘。使用该数据集进行了分割实验,结果表明使用深度学习方法可以获得准确的结果。我们的皮层下结构分割数据集印度大脑分割数据集(IBSD)在 https://doi.org/10.5281/zenodo.5656776 上公开提供。
摘要 - 利用计算机技术建立有效的解决方案来提高创伤性脑损伤 (TBI) 诊断的速度和效率是一项挑战。相关文献中提出了几种涉及不同精度和一定程度工作量的分割方法,并对其进行了详细描述。脑图像分割是重要的临床诊断工具之一。本文提出了一种改进的 (MDRLSE) 算法,用于计算机断层扫描 (CT) 图像上的出血分割。利用消除模糊边缘的图像噪声来描绘出血区域的精确边界。所提出的分割技术实现了 97.16% 的准确率。该技术使用基于边缘的轮廓模型进行图像分割,提供简单的窄带以显着降低计算成本。性能结果表明,它对于具有各种特征的脑图像中的 TBI 图像分割是有效的。