地震特征的紧密燃气砂岩(TGS)储层对于识别有希望的气轴承区是必不可少的。然而,由于TGSS中的复杂微观结构,探索地震中弹性弹性特性的岩石物理显着性很大。同时,砂岩和泥岩的层状结构在准确提取至关重要的紧密砂岩特性方面加剧了困难。提出了一种基于岩石物理的综合框架,以从地震数据中估算TGSS的储层质量。TGSS是使用双孔隙率模型建模的,为计算岩石物理模板提供了用于储层参数估计的实用工具。V p / v S的比率用于通过从电线日志中评估的岩性区分来评估的阈值在目标范围内预测TGS储层的累积厚度。这种方法还促进了更好地捕获TGSS的弹性特性进行定量地震解释。使用基于电线对数分析获得的相关性从P波阻抗中估算了总孔隙率。之后,构建了与估计的总孔隙率集成的三维岩石物理模板,以解释速度比和大量模量的微裂缝孔隙率和气体饱和度。集成框架可以最佳估计主导质量的参数。基于获得的参数提出的指标的结果与气体生产非常吻合,并且可以用于预测有希望的TGS储层。©2023作者。此外,结果表明,考虑微裂纹孔隙率可以更准确地预测高质量的储层,从而进一步验证了所研究区域中提出的方法的适用性。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
摘要:本文提出了不同强度对大地圆顶结构的影响的确定。根据常规的八面体设计了分析圆顶的结构,该结构是根据创建其拓扑的两种不同的方法。使用了四个不同强度和记录持续时间的地震记录,这使得对8个模型进行数值分析成为可能。设计的空间结构是带有钢横截面的圆顶,这一点毫无疑问地以其轻度和覆盖非常大的面积的可能性,而无需使用内部支撑。设计钢圆顶目前是构造师和建筑师的挑战,他们考虑了他们的美学考虑。使用时间历史方法,该论文在应用不同方向(两个水平的“ X”和“ Y”和一个垂直“ Z”)中呈现了地震响应。显示了强制振动和记录强度的值,在此基础上,试图确定哪种地震记录可能对根据两种不同的结构拓扑而产生的设计的地质圆顶可能更不利。为此,使用了FFT(快速傅立叶变换)方法。还分析了结构的最大加速度和位移。进行的分析表明,地震激发对大地圆顶结构的影响,具体取决于塑造其拓扑的应用方法(方法1和2)。此外,该分析可能有助于评估偶然地震的影响。本文无疑将在设计地震区域的地球圆顶结构中有用。
地震在世界各地肆虐,对建筑物造成了大量破坏,但仍有许多建筑物不符合现行抗震规范要求,因此需要进行抗震加固。在许多情况下,地震引起的破坏主要集中在低层钢筋混凝土 (RC) 结构上,这些结构的基本自振周期接近地震的主频。人们提出了不同的方法来减轻结构响应并耗散地震引起的能量 (Kim 2019)。增加钢支撑等额外刚度是传统且广泛使用的抗震加固技术 (Park et al . 2012, Maheri and Yazdani 2016, Mohammadi et al . 2020))。此外,采用狭缝阻尼器等金属耗能装置也被认为是结构抗震设计和加固的另一种有效手段(Zhang et al. 2015;Lee and Kim 2017;Javidan and Kim 2020;Dereje and Kim 2022)。
第4章 - 项目描述本章介绍了项目的关键方面。它旨在提供有关该项目的足够信息,后来是对接收环境的描述和表征以及随后进行的环境评估的投入。1项目位置该项目涉及在阿根廷共和国的3D离岸地震记录,更具体地说是位于阿根廷大陆架北阿根廷盆地的CAN_100,CAN_108和CAN_114街区。地震采集应覆盖6,245公里2,占领CAN_100-108地区,该区域位于距离布宜诺斯艾利斯省Mar Del Plata最近的沿海城市近海300公里以上。另一方面,在CAN_114区域中探索的表面约为3,443 km 2,并且位于布宜诺斯艾利斯省的Necochea市超过400公里。CAN_100-108地震数据采集区位于距CAN_114采集区162公里处。下图显示了正在研究的地震数据采集区及其距离阿根廷海岸的距离。
根据美国地质调查局 (USGS 2021) 的定义,远震地震是指震源距离测量地点非常远(距离超过 1,000 公里)的地震。远震波可用于识别地球内部结构,即远震层析成像,例如 Rawlinson 等人(2016 年)和 Estève 等人(2020 年),因为它们在地球深处传播。此外,远震波在地球深处的传播比在地壳中更为规则,因此可以用一维速度和衰减模型很好地描述,从而可以推导出全球适用的远震震级尺度(Bormann 等人,2013 年),例如面波震级(Ms)(Gutenberg,1945a)和体波震级(mb)(Gutenberg,1945b、1945c)。
铅橡胶地震隔离轴承(LRB)已安装在许多必不可少的和关键的结构中,例如医院,大学和桥梁,以便为它们提供延长的时间延长,并具有相当多的能量来减轻强大地面运动的影响。因此,研究这种设备的损坏力学对于理解和准确描述其热机械行为至关重要,因此可以更安全地设计地震隔离结构。迄今为止,LRB的滞后行为已使用1)牛顿力学和经验曲线拟合降解函数进行建模,或者2)热传导理论和理想化的双线性曲线,包括降解效应。使用本质上是现象学或包含一些调整后参数的模型的原因是,牛顿的普遍运动定律缺乏解释系统降解和能量损失的术语。在本文中,统一的力学理论(整合了热力学定律和牛顿力学),用于对LRB的力解散响应进行建模。的确,曲线拟合技术不需要描述其损伤行为,因为使用沿热力学状态指数(TSI)轴的熵产生计算降解。在Abaqus中构建了铅橡胶轴承的有限元模型,在该模型中,实现了用户材料子例程UMAT来定义统一力学理论方程和铅的粘膜塑料本构模型。有限元分析结果与实验测试数据进行了比较。
认识到其优势和成就,并希望在功能和组织上定位自己以应对未来的挑战,该小组同意任命一个联合特设规划委员会来为该小组制定战略计划。联合特设