Bharath Dyaga,Antoine Lemaire,Shubhradip Guchait,Huiyan Zeng,Bruno Schmaltz等。掺杂剂位置在交替的供体供体 - Acceptor拷贝剂的半晶结构中的影响对极性交换P极性交换P→N机械。材料杂志化学杂志C,2023,11(47),第16554-16562页。10.1039/D3TC02416D。 hal-0460287210.1039/D3TC02416D。hal-04602872
这次独特的活动将为新晋和准父母、早教工作者、学龄从业者、保姆和对儿童发展感兴趣的学生(尤其是从出生到 6 岁的孩子)提供一个机会,让他们聆听专家演讲。与会者将被邀请参观市场展览和信息展台。展台将提供有关父母和幼儿团体、选择优质托儿服务时应注意的事项以及儿童保育资助计划(即国家儿童保育计划、ECCE 和 Access Inclusion Model)等主题的信息。
-télésanté是使用信息和通信技术来提供医学关注 - 允许在远距离的医疗和医疗社会水平上向个人提供建议和预防; - 远程医疗:远程医疗是一种远程图表,涉及使用信息和通信技术提供远程医疗服务。它允许卫生专业人员与患者进行沟通,进行诊断,开处方治疗并监控患者健康,而无需亲自见面; -m-santé:M-Santé(或移动健康)是移动健康技术的使用,特别是移动健康应用程序,便携式设备和传感器。m-santé允许患者监测其健康状况,接受医疗保健建议并与远程卫生专业人员互动; - 电子健康文件系统:健康文件系统是IT系统,可以存储和共享医疗信息和健康数据。他们允许卫生专业人员以更有效和协调的方式咨询病史和患者检查,开处方治疗并监测患者健康的结果。它允许患者从家里或工作场所获得护理,而无需前往护理机构。总而言之,电子保健旨在通过使用数字技术提供远程医疗保健,提供更好的可访问性和更好的护理协调,并帮助患者照顾自己的健康,旨在提高医疗保健的效率和质量。
“从CPP到PhD学生,调查“ Love Bite” - 抗疲劳的下颌肌肉可以在南方鳄鱼蜥蜴(Elgaria Multicarinata)中实现持久的求爱行为”
诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。
这使得它们可以使用更少的接触,从而实现更高效的热电转换。具有“轴相关传导极性 (ADCP)”或角极导体的材料,在一个方向上传导正电荷 (p 型 ),在另一个方向上传导负电荷 (n 型 ),是横向热电装置的有希望的候选材料。不幸的是,到目前为止,对横向热电效应 (TTE) 的直接演示研究较少。
TDSB致力于制定和实施一项独特的计划,以解决歧视,仇恨和种族主义事件,这些事件继续发生在该地区内部,这是通过种族主义,偏见和仇恨门户所获得的数据所证明的。在员工支持的情况下,该战略旨在通过根据上述支柱制定量身定制的行动计划来对社区的声音做出反应。该计划将使社区能够在行动中看到自己,并需要家庭,社区,合作伙伴组织和员工的持续合作和支持。TDSB设定了一个分阶段的方法来制定反仇恨和反种族主义战略(2023)和战斗仇恨和种族主义:学生学习策略更新(2024)中确定的不同的为期两年的工作计划(2024年)。下表表示TDSB采取的分阶段方法:
在本文中,提出了一个新的入侵检测系统(IDS)来处理分布式拒绝服务(DDOS)攻击。提出了一种基于Harris Hawks优化(HHO)和蜻蜓算法(DA)的组合算法,以选择相关功能,并消除NSL-KDD数据集中的无关和冗余特征。提取的特征呈现给多层感知器(MLP)神经网络。该网络(作为分类器)将网络流量分为两个类别,即正常和攻击类别。在入侵检测领域中使用两个标准和广泛使用的数据集评估所提出的模型的性能:NSL-KDD和UNSW-NB15。模拟的结果清楚地表明了在关键评估标准(例如准确性,精度,回忆和F量)方面,与以前的方法相比,所提出的方法的优越性。具体而言,所提出的方法在这些指标中分别显示出96.9%,97.6%,96%和96.8%的改善(与基线方法相比)。这些改进的主要原因是合并算法智能选择最佳特征并降低数据尺寸的能力。这种仔细的功能选择使MLP神经网络可以专注于关键信息,提高分类准确性并最终提高入侵检测系统的性能。这项研究表明,将优化算法和机器学习结合起来效果很好。因此,它有效地应对DDOS攻击。它可以导致更好的入侵检测系统。这些系统将更有效,准确。
量子点在 InSb 纳米线内以栅极定义,靠近 NbTiN 超导触点。随着点和超导体之间的耦合增加,传输中的奇宇称占据区域在诱导超导间隙上方和下方都变得不可辨别(被擦除)。在间隙上方,奇数库仑阻塞谷中的电导率增加,直到谷被抬起。在间隙下方,安德烈夫束缚态经历量子相变,变为奇数占有的 Kondo 屏蔽单重态基态。我们研究了在低偏置和高偏置下奇宇称状态的明显擦除在多大程度上一致。我们用数值重正化群模拟来补充实验。我们从 Kondo 屏蔽和超导之间的竞争的角度来解释结果。在擦除奇宇称机制中,量子点表现出类似于有限尺寸马约拉纳纳米线的传输特征,在偶奇点占据和偶奇一维子带占据之间形成相似性。