Justin M. Hodgkiss 3,4 , Daniel M. Packwood 1,2* 1 京都大学综合细胞材料科学研究所(iCeMS),日本京都 2 综合数据材料科学中心(iDM),麦克迪亚米德先进材料与纳米技术研究所,新西兰惠灵顿 3 麦克迪亚米德先进材料与纳米技术研究所,新西兰惠灵顿 4 惠灵顿维多利亚大学化学与物理科学学院,新西兰惠灵顿 5 大赛璐企业研究中心,创新园区(iPark),大赛璐株式会社,日本姬路 * 通讯作者。电子邮件:dpackwood@icems.kyoto-u.ac.jp 摘要 非晶态有机材料中激子和电荷跳跃的模拟涉及许多物理参数。在开始模拟之前,必须通过昂贵的从头计算来计算出每个参数,因此研究激子扩散的计算开销很大,尤其是在大型复杂材料数据集中。虽然之前已经探索过使用机器学习快速预测这些参数的想法,但典型的机器学习模型需要较长的训练时间,这最终会增加模拟开销。在本文中,我们提出了一种新的机器学习架构,用于构建分子间激子耦合参数的预测模型。与普通的高斯过程回归或核岭回归模型相比,我们的架构设计方式可以减少总训练时间。基于此架构,我们建立了一个预测模型并使用它来估计非晶态并五苯中激子跳跃模拟的耦合参数。我们表明,与使用完全从密度泛函理论计算的耦合参数的模拟相比,这种跳跃模拟能够对激子扩散张量元素和其他属性实现出色的预测。因此,这一结果以及我们的架构提供的较短训练时间表明了如何使用机器学习来减少与非晶态有机材料中的激子和电荷扩散模拟相关的高计算开销。
抽象的二维(2D)半导体材料已被广泛研究其有趣的激子和光电特性,这些特性是由强烈的多体相互作用和在2D极限下的量子限制引起的。这些材料中的大多数都是无机的,例如过渡金属二北元化,磷烯等。有机半导体材料的出色电导率和低介电系数,用于在薄膜或大量材料相中的类似应用。在薄膜和散装相中缺乏结晶度,导致了激子和电子/光节间隙特性的歧义。最近的2D有机材料的出现已经打开了一个高结晶度和受控形态的新领域,从而可以研究低洼的激子状态和光电特性。与无机2D材料中的Wannier -Mott激子相比,它们已被证明具有不同的激子特性。在这里,我们介绍了我们最近对2D有机半导体材料的实验观察结果和分析。我们讨论了单晶材料的高晶和形态控制的生长及其光电特性的作用。该报告解释了有机材料中的Frenkel(FR)和电荷转移(CT)激子以及随后的光发射和吸收特性。实验研究并讨论了源于CT和FR激子之间的相互作用,这是由CT和FR激子之间的相互作用产生的,以揭示电子带的结构。然后,我们讨论我们在J型聚集的有机材料中观察到的纯FR行为,从而导致连贯的超级激体排放。在有机材料中,激发子的超级转移,由其纯粹的fr性质促进,以及在大量分子上的激子的离域化。最后,我们讨论了这些有机2D材料的应用和视力,在快速有机发光二极管,高速激发电路,量子计算设备和其他光电设备中。
s- vAcancies由聚(4-型硫磺酸盐)(PSS)自我修复。为此,不仅自我修复的PL频谱强度大大增强,而且峰值能量显然是蓝色的移动。
1 里昂大学,克劳德·贝尔纳里昂第一大学,法国国家科研中心,Institut Lumi`ere Mati`ere,F-69622,里昂,法国 2 纳米科学与纳米技术中心,法国国家科研中心,巴黎第十一大学,巴黎萨克雷大学,91120 Palaiseau,法国 3 巴黎萨克雷大学,ENS Paris-Saclay,CentraleSup´elec,CNRS,LuMIn,UMR9024,Gif-sur-Yvette 91190,法国 4 纽约城市学院物理系,纽约,纽约州,美国 5 纽约城市大学物理系,研究生中心,纽约,纽约州,美国 6 里昂大学,里昂中央理工学院,里昂国立应用科学学院,克劳德·贝尔纳里昂第一大学,CPE Lyon, CNRS,INL,UMR5270,Ecully 69130,法国 7 圣安德鲁斯大学物理与天文学院,圣安德鲁斯,KY16 9SS,英国 8 图卢兹大学,INSA-CNRS-UPS,LPCNO,135 Av. Rangueil,31077 图卢兹,法国(日期:2025 年 1 月 13 日)
结论总之,对外部半导体的研究为了解半导体物理的基本原理及其在现代电子设备中的实际应用提供了宝贵的见解。通过精心操纵掺杂技术和材料特性,外部半导体在开发具有多种功能和应用的高性能半导体器件方面发挥着关键作用。在整个项目报告中,我们探讨了外部半导体的各个方面,包括它们的能带理论、电性能、制造工艺和未来前景。由于引入了掺杂原子,外部半导体表现出独特的电行为,这在带隙内产生了额外的能级并影响了材料的电导率和载流子浓度。了解这些特性对于设计和优化用于从微电子和光子学到可再生能源和 skaging 等广泛应用的半导体器件至关重要。这些过程需要精确控制和复杂的技术才能实现所需的设备性能和可靠性。先进的材料和制造技术,以及系统级封装 (SiP) 和 3D 集成等创新封装技术,正在推动外部半导体的未来向增强功能、小型化和能源效率的方向发展。展望未来,外部半导体有望在材料科学、设备工程和系统集成方面继续取得进步。物联网 (IoT)、人工智能 (AI) 和边缘计算等新兴技术为半导体研究人员和工程师带来了新的机遇和挑战。通过利用跨学科合作并采用可持续的制造实践,我们可以利用
摘要:晶格动力学对于光伏材料性能,控制动态障碍,热载体冷却,电荷载体重组和运输至关重要。软金属 - 甲基钙钛矿表现出特别有趣的动力学,拉曼光谱表现出异常宽阔的低频反应,其起源仍在争论。在这里,我们利用超低频率拉曼和红外Terahertz时域光谱镜来对各种金属壁半导体的振动响应进行系统的检查:FAPBI 3,MAPBI X BR 3-x,3-x,cspbbr 3,cspbbr 3,pbi 2,pbi 2,pbi 2 agbbibr 6,agbibr 6,agbibr 6,agbib 6,cubbi 6,cubi 6,cui 6,and and and and and and and and and and and and and and and and and and and and and。我们排除外部缺陷,八面体倾斜,阳离子孤对和“液体样”玻色子峰,这是辩论中心拉曼峰的原因。相反,我们提出,中央拉曼反应是由拉曼活性,低能声子模式的显着扩展的相互作用而产生的,这些模式被Bose-Einstein统计数据从低频的人群成分强烈扩大。这些发现阐明了在柔软的金属壁式半导体中出现的光伏应用中的光相互作用的复杂性,用于光伏应用。l
图7:实验设置。为了改变温度,我们将使用含有液氮或氦气的血管。在容器中,由于传热机制,温度梯度沿垂直方向形成(图7)。温度t(x)取决于距氦表面的距离x。确切的温度曲线由几个因素确定,包括氦气量,容器的几何形状及其绝缘特性。样品(Cu,ta uds si)安装在由COP-PEN制成的样品支架(Probenhalter)上,该样品拧到杆上(Tauchrohr)并被圆柱形屏蔽(Schutzrohr)覆盖(图9)。另外,将铂和碳电阻添加到样品持有器中,该量将用于测量温度。
本应用说明旨在为飞思卡尔半导体客户提供在空气腔封装 (ACP) 中焊接回流安装高功率 RF 晶体管和集成电路的指南。本文档将帮助客户开发适合其设计和制造操作的装配工艺。每个功率放大器 (PA) 设计都有其独特的性能要求。同样,每个制造操作也有其自己的工艺能力。因此,每个设计和组装可能都需要进行一些微调。本应用说明旨在为客户提供所需的信息,以建立最适合其设计并与制造操作兼容的工艺。在设计和制造 PA 系统时,必须考虑电气性能、热性能、质量和可靠性因素。使用此处提供的指南,客户应该能够开发可制造的装配流程,该流程可以执行以下操作:
简介:Samuel Carter 博士是物理科学实验室 (LPS) 的研究员主管,从事固态自旋系统的量子传感和量子计算实验研究。他是固态量子比特量子光学、自旋相干控制和固体缺陷自旋量子传感方面的专家。2004 年,他在加州大学圣巴巴拉分校获得物理学博士学位,与 Mark Sherwin 教授合作研究太赫兹驱动量子阱,并在 NIST 和科罗拉多大学博尔德分校与 Steve Cundiff 教授一起从事半导体超快光谱博士后研究。在美国海军研究实验室从事固态量子信息科学工作 15 年后,Carter 博士加入 LPS,从事半导体自旋系统的量子传感和量子计算研究。