摘要 在本研究中,我们介绍了一种市售肌电假肢(Myobock ©,奥托博克)的改进版本,旨在为该设备提供基于脑机接口 BMI 的感觉运动控制。新系统使用用户的脑电图 (EEG) 信号以及手镯产生的振动作为输入,手镯包含振动马达,其频率与安装在假指尖的力敏电阻 (FSR) 测量的力成正比。在对七名健全人和四名截肢受试者进行实验期间,三种不同特征提取方法 (CSP、WD、GSO) 的四种组合已用于构建由两种具有不同电极数量的不同记录系统收集的 EEG 信号的特征向量。然后测试了三种机器学习算法(人工神经网络、具有线性和径向基函数核的支持向量机)的分类/预测性能。报告的结果为使用无线 BMI 来控制肌电假肢的主要运动类型提供了概念证明,即使用电极较少的 EEG 系统而不是研究级系统。
脑机接口 (BCI) 技术的发展对于帮助因严重运动瘫痪而失去说话能力的人实现交流至关重要。一种越来越受关注的 BCI 控制策略采用从神经数据进行语音解码。最近的研究表明,直接神经记录和高级计算模型相结合可以提供有希望的结果。了解哪些解码策略可以提供最佳和直接适用的结果对于推动该领域的发展至关重要。在本文中,我们优化并验证了一种解码方法,该方法基于语音重建,该语音重建直接从语音生成任务期间来自感觉运动皮层的高密度皮层脑电图记录中进行。我们表明 1) 专用机器学习优化重建模型是实现最佳重建性能的关键;2) 重建语音中的单个单词解码可达到 92-100% 的准确率(偶然水平为 8%);3) 从感觉运动大脑活动直接重建可以产生可理解的语音。这些结果强调了模型优化以实现最佳语音解码结果的必要性,并强调了基于感觉运动皮层重建的语音解码为开发下一代 BCI 通信技术所提供的潜力。
摘要:背景。运动图像与明显的运动相同的神经回路。因此,运动的心理彩排通常用于补充体育锻炼,并可能在中风后有助于运动神经康复。一次尝试捕获大脑参与图像的尝试涉及作为标志物的用途,用于在人类电脑电图(EEG)中发现的丘脑皮层感觉运动节律的抑郁或事件相关的对异步(ERD)。使用快速的实时处理,可以使受试者意识到自己的大脑反应,或者更好地通过称为大脑 - 计算机接口(BCI)的技术将它们转化为动作。但是,与开环训练相比,尚不清楚启用BCI的图像是否促进了更强或质量上不同的大脑反应。方法。在4.5个月的时间内参加了六个封闭式和开环运动图像经验丰富的健康志愿者,他们参加了六次实验会议,在其中,他们对先前已知的Fiffer和ARM运动进行了动力学图像,并同时进行了30次通道EEG EEG摄取。第一个和上一个会议主要由反馈试验组成,在这些反馈试验中,对受试者进行了实时的脑电图模式的分类结果;在其他会议期间,未提供反馈。在实验日和使用线性混合效应建模的反馈条件之间,比较了与图像相关的ERD模式的时空和振幅特征。结果。结论。ERD的主要空间来源在六个实验日内似乎是高度稳定的,在七个受试者中却几乎相同(Pearson'sρ> 0.94)。在一个受试者中,仅在一个受试者中,反馈和无回馈条件之间的激活空间模式在统计学上显着差异(p = 0.009)。通过BCI传递的实时视觉反馈并没有显着提高ERD强度。结果表明,通过简单的开放环设置,例如,通过家庭自我实践,可以通过良好的受试者产生MI的潜在受益。
1。国际大脑,音乐和声音研究实验室(BRAMS),加拿大蒙特利尔2。部门心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。 大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。 欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。部门心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。部门荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。部门神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡
脑部计算机界面(BCI)是以可靠的方式作为人机相互作用的外在途径(Birbaumer,2006)。残疾人通过神经活动来控制外部设备是有效的(Buch等,2008)。中风患者特别是运动障碍患者,能够执行BCI临床康复任务(Meng等,2016)。在这种处理中,感觉运动节律变化用作主动干预的神经系统调节(Mane等,2019)。在康复期间,要求患者尝试或想象进行运动。然后,电动机尝试(MA)或运动图像(MI)-BCI系统将通过训练有素的分类器基于先前的数据集(Pillette等,2020年),输出同步的感觉生物反馈(例如机器人臂恢复)。在干预中,功能运动是由神经生理活性显着启发的(Xu等,2014)。这是大脑可塑性和功能恢复的持续过程(Remsik等,2019)。最近的研究报道了使用长期感觉运动节律(SMR)-BCI干预措施改善中风患者的肢体运动(Ramos-Murguialday等,2013; Pichiorri等,2015; Bundy等,2017)。尽管如此,BCI康复受到较差的效率识别算法和模型个性变异性的限制(Grosse-Wentrup等,2011)。相关的工作证明,BCI解码精度对于康复结果不足(Mane等,2020)。此外,BCI反馈的失败也减少了受训者的信心(Foong等,2019)。因此,应对模式识别和模型校准进行各种改进,以提高临床应用中的SMR-BCI性能。
神经振荡,自发发生以及大脑从事任务的振荡活动的节奏模式,在功能网络内部和跨功能网络的神经交流中起着至关重要的作用。在感觉运动网络中,MU(8-13 Hz)中的振荡,β(13.5-25 Hz)和γ(30-90 Hz)频率范围通常会锁定为运动开始时,并且在逐渐振幅(desynchroncrization)中逐渐降低(ERNCHRONING)(ERCHRORINCER)(ERCHRORCH)(ERCHRORCH)(ERCHRORCH)(ERNCHRORIAN)的特征(ERNCHRORINCER)(ERNCH)(ERNCRORIN)(ERNCRORINCERNINCERRORN)(ERNCRORCH)(EVENTRORIN)(EVENTRORIN)。尽管他们的功能作用仍在争论中,但MU,Beta和γ振荡在几种神经精神病学条件下发生了改变(Peter等,2022),并被认为与感觉运动控制,学习和可塑性有关(Pfurtscheller and Lopes da Silva da Silva,1999; 1999; Engel and Frard; ghillies; ghillies; ghillies;该研究主题展示了有关皮质振荡在运动控制和学习中的作用以及这种知识的转化适用性的研究。它包含涉及实验和方法研究和文献综述的五篇文章。
脊髓损伤(SCI)是一种主要的残疾,导致运动和感觉障碍以及受影响的个体的广泛并发症,这不仅影响患者的生活质量,而且会给家人和医疗保健系统带来沉重的负担。尽管对SCI的临床有效治疗很少,但在过去的几十年中,研究导致了几种与神经调节有关的新型治疗策略。神经调节 - 神经调节剂,电刺激或光遗传学调节神经元活性的使用 - 可以基本上促进SCI后感觉运动功能的恢复。最近的研究表明,神经调节与其他技术结合使用,可以使瘫痪的患者有意,控制运动并促进感觉恢复。尽管这种治疗对完全克服SCI有希望,但神经调节具有这种作用的机制很难确定。在这里,我们回顾了相对于电神经调节和光遗传学神经调节的最新进展。我们还检查了这些方法可以恢复感觉运动功能的潜在机制。然后,我们强调了这些方法的优势,并在其应用方面留下了挑战。
1。国际大脑,音乐和声音研究实验室(BRAMS),加拿大蒙特利尔2。部门心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。 大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。 欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。部门心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。部门荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。部门神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡
摘要 人类的运动学习能力差异很大,但人们对这种差异背后的神经机制知之甚少。最近的神经成像和电生理研究表明,大规模神经动力学存在于低维子空间或流形中,学习受到这种内在流形结构的限制。在这里,我们使用功能性磁共振成像询问受试者水平的神经偏移与流形结构的差异是否可以解释参与者之间的学习差异。我们让受试者连续两天在磁共振扫描仪中执行感觉运动适应任务,让我们能够评估他们几天的学习表现,并持续测量大脑活动。我们发现,认知和感觉运动大脑网络中流形活动的整体神经偏移与受试者几天的学习和再学习模式差异有关。这些发现表明,流形外活动提供了学习过程中不同神经系统相对参与度的指标,并且受试者在学习和再学习模式上的差异与认知和感觉运动网络中发生的重新配置过程有关。
1。国际大脑,音乐和声音研究实验室(BRAMS),加拿大蒙特利尔2。部门心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。 大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。 华沙经济学与人类科学大学,波兰,波兰5。 欧罗马夫,蒙彼利埃大学,蒙彼利埃,法国6。 部门 心理学,魁北克大学的Trois-rivières,Trois-Rivières,Trois-Rivières,加拿大7。 部门 Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8. 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。华沙经济学与人类科学大学,波兰,波兰5。欧罗马夫,蒙彼利埃大学,蒙彼利埃,法国6。部门心理学,魁北克大学的Trois-rivières,Trois-Rivières,Trois-Rivières,加拿大7。部门Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8. 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8.部门神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡