空客在汉堡启用新的 A320 结构装配线 树立数字自动化新标准 #Airbus #A320 汉堡,2019 年 10 月 1 日——空客在汉堡启用了高度自动化的 A320 系列飞机机身结构装配线,展示了空客工业生产体系的演变。新工厂特别专注于制造 A321LR 的较长部件,拥有 20 台机器人、一种新的物流概念、激光测量自动定位以及数字数据采集系统。这些将进一步支持空客提高质量和效率的努力,同时为其工业生产体系带来更高的数字化水平。“通过采用一些最新技术和工艺,空客已经开始了在 A320 系列生产中树立新标准的旅程。这条新的机身结构装配线是 A320 系列产能提升的重要推动力。空客首席运营官 Michael Schoellhorn 表示:“提高自动化和机器人水平可以实现更快、更高效的制造,同时保持我们对质量的首要关注。”“鉴于 A320 系列的巨大成功和订单积压,我们正在采取必要措施,确保我们的生产系统能够与我们产品的卓越性相匹配,并能够满足客户对我们单通道飞机的需求。” 他补充道:“我们对汉堡的员工和工厂给予了高度信任和投资。我们现在需要履行对客户的承诺,同时确保整体竞争力。”对于初始段的组装,空客采用了一种模块化、轻型自动化系统,称为“Flextrack”,八个机器人在每个纵向接头上钻孔和沉头 1,100 到 2,400 个孔。在下一个生产步骤中,12 个机器人(每个机器人在七个轴上操作)将机身中段和后段与尾部组合成一个主要部件,每个轨道接头钻孔、沉头、密封和插入 3,000 个铆钉。除了使用机器人外,空客还在材料和零件物流中实施新方法和技术,以优化生产、改善人体工程学并缩短交货时间。这包括物流和生产水平的分离、以需求为导向的材料补给以及自动导引车的使用。汉堡结构装配工厂负责将单个机身外壳连接成段,以及将单个段最终组装到飞机机身。飞机部件在最终交付到法国、德国、中国和美国的总装线之前,会配备电气和机械系统。高效的 A320neo 系列(包括 A321)拥有天空中最宽的单通道客舱,采用了包括新一代发动机和鲨鳍小翼在内的最新技术,从第一天起,这些技术共同节省了 15% 以上的燃油和二氧化碳,到 2020 年将节省 20%,同时噪音降低 50%。迄今为止,A320neo 系列已获得来自 100 多家客户的 6,500 多份订单。
使用任何方法预测武器的携带和随后的释放的困难不仅在于能够准确模拟复杂的组件相互作用,还在于能够足够快地提供这些信息以授权武器的放行。近二十年前,引入了一种综合测试和评估 (T&E) 方法进行存储分离,该方法结合了风洞测试、分析方法和飞行测试。当时只是偶尔使用的 CFD,现在经常取代风洞进行外部存储分离。许多现有和所有新型攻击机,无论是有人驾驶的还是无人驾驶的,都是为内部武器携带而设计的。描述了使用 CFD、风洞和飞行测试进行飞机存储与内部武器舱分离的问题。
尽管成像光谱技术是环境数据采集、分析和建模的有力工具,但热红外遥感的应用和研究还不够完善。随着遥感技术的发展,越来越多的单光谱或多光谱传感器卫星被发射,热红外数据受到越来越多的关注。从热红外数据中反演的发射率和温度对于科学研究和业务应用具有极其重要的意义。地表发射率是一个重要参数,发射率光谱通常用于区分目标特征和解释特征。地表温度是理解地表过程的重要参数。通过测量与特定景观和生物物理成分相关的地表温度,然后将地表温度与特定景观现象或过程的能量通量关联起来(sobrino,
将其与图 1 中的 FTA 分离模型联系起来,SIL0 和 SIL4 系统之间的独立性需要 SSL 为 4,相当于 SIL 4 系统的可靠性。实现这些分离级别可以使用 IEC 61508-2 第 7.4 节中确定的类似合规路线。在没有外部接口的同质系统中建立安全完整性级别在现有标准中已经足够,尽管有时存在争议。SIL 差异与 SSL 的拟议最低要求之间的关系需要进一步研究,以证明不仅仅是极端情况。简单来说,如果 SIL 要求相同,这实际上是安全系统的扩展,因此不需要 SSL。如果有与 SIL0 系统的接口,则需要与更高完整性系统相同的严谨性。
介绍了一种稳健且快速的软件,用于求解广义 Sylvester 方程 (AR – LB = C, DR – LE = F),其中未知数为 R 和 L。这种特殊的线性方程组及其转置可用于计算广义特征值问题 S – AT 的计算特征值和特征空间的误差界限、计算同一问题的缩小子空间以及计算控制理论中出现的某些传递矩阵分解。我们的贡献有两方面。首先,我们重新组织了此问题的标准算法,在其内部循环中使用 3 级 BLAS 运算(如矩阵乘法)。这使得 IBM RS6000 上的算法速度提高了 9 倍。其次,我们开发并比较了几种条件估计算法,这些算法可以廉价但准确地估计该线性系统解的灵敏度。