使用人工智能或机器学习技术开发智能对话代理是自然语言处理领域的一个有趣问题。在许多研究项目中,他们使用人工智能、机器学习算法和自然语言处理技术来开发对话/对话代理。过去,构建聊天机器人架构的方法依赖于手写规则和模板或简单的统计方法。随着深度学习的兴起,这些模型在 2015 年左右迅速被端到端可训练神经网络所取代。更具体地说,循环编码器-解码器模型 [Cho et al., 2014] 主导着对话建模任务。该架构改编自神经机器翻译领域,在该领域表现非常出色。从那时起,出现了许多变体[Serbanetal.,2016]和功能,这些变体和功能提高了聊天机器人的对话质量[Richard.,2017]。在当前的聊天机器人中,许多都是使用基于规则的技术、简单的机器学习算法或基于检索的技术开发的,这些技术并不能产生良好的结果。在本文中,我使用现代技术开发了一个 Seq2Seq AI 聊天机器人。为了开发 Seq2Seq AI 聊天机器人,我们实现了编码器-解码器注意机制架构。该编码器-解码器使用带有 LSTM(长短期记忆)单元的循环神经网络。这些对话代理主要由企业、政府组织和非营利组织使用。它们经常被银行等金融机构、信用卡公司、在线零售商店和初创企业等企业部署。
关键字:神经普通微分方程,Wasserstein生成的广告网络,序列到序列网络本报告调查了神经通用差分方程(NODE)在机器学习中的应用,重点介绍其在Wasserstein生成的对抗性网络(WGANS)(WGANS)(WGANS)和序列到序列到序列到序列 - 序列到序列(seq2seqsssssssssssssss)的集成。我们探索了解决ODE的各种方法,并在计算效率和准确性方面进行了比较。我们的研究采用了JAX框架和差异方程求解器库的Diffrax来实施和评估这些方法。我们使用FréchetInception距离(FID)度量和SEQ2SEQ模型使用BLEU分数对WGAN进行基准测试。我们的分析涵盖了不同的伴随,自适应公差,网络体系结构中的求解器位置以及标准化技术的影响。对于WGAN,我们发现求解器的选择及其实现并没有显着影响FID得分,但确实会影响计算时间。在SEQ2SEQ模型中,我们观察到,增加网络的宽度会始终提高BLEU分数,并且选择伴随方法和适应性公差可以显着影响性能和效率。我们的结果表明,ODE求解器和相关参数的最佳选择取决于特定的机器学习任务以及准确性和计算效率之间所需的权衡。这项研究通过为不同的应用程序和计算约束来优化这些模型,从而为基于节点的机器学习的不断增长贡献。
社交媒体由于其广泛使用和独特的语言特征而成为自然语言处理(NLP)研究的重要重点。正常的社交媒体有限,特别是对于像阿拉伯语这样的形态丰富的语言,由于平行语料库有限,这仍然是一项复杂的任务。阿拉伯语通过现代标准阿拉伯语(MSA)和各种区域方言,共同称为方言阿拉伯语(DA),这使NLP的非正式性质和可变性变得复杂。本文介绍了Dial2MSA验证,这是DIAL2MSA数据集的扩展,其中包括验证的墨西哥湾,埃及人,列万坦和Maghrebi方言的翻译。我们评估了该数据集上SEQ2SEQ模型的性能,突出了状态模型在翻译阿拉伯语方言中的有效性。我们还通过错误分析提供见解,并概述将来的SEQ2SEQ模型和数据集开发的未来方向。DIAL2MSA验证的数据集可公开用于支持进一步的研究1。
摘要:本文介绍一种新方法,将人机界面 (HMI) 状态(一种涵盖操作员动作和过程状态的视觉反馈状态模式)从多变量时间序列转换为自然语言处理 (NLP) 建模领域。该方法的目标是在给定 k 个滞后过去 HMI 状态模式的情况下,预测 n 个提前时间步长窗口的操作员响应模式。NLP 方法提供了在 HMI 状态模式中编码 (语义) 上下文关系的可能性。为此,介绍了一种使用序列到序列 (seq2seq) 深度学习机器翻译算法构建原始 HMI 数据以进行监督训练的技术。此外,基于注意力等当前最先进的设计元素的自定义 Seq2Seq 卷积神经网络 (CNN) NLP 模型与基于标准循环神经网络 (RNN) 的 NLP 模型进行了比较。结果表明,用于建模 HMI 状态的两种 NLP 模型设计具有相当的有效性。 RNN NLP 模型显示出更高的(≈ 26%)预测准确度,一般来说,无论是样本内还是样本外的测试数据集。然而,自定义 CNN NLP 模型显示出更高的(≈ 53%)验证准确度,表明在相同数量的可用训练数据的情况下,过度拟合较少。所提出的工业 HMI NLP 建模的实际应用,例如在发电站控制室、航空(驾驶舱)等,正朝着现实的方向发展
可以从对话代理越来越受到学界与产业界重视的趋势中得到印证。然而现有的对话系统,无论是采用模板工程,还是神经网络seq2seq机器学习模式,大多预设了词汇(或词语边界)的“真实”存在,及其意义的静态对应关系。尽管如此,正如功能语言学所揭示的,“形式与意义对”的本质是约定俗成的,就像实际的自发对话语言一样。按照Wray(2005)的观察,我们日常语言中大量的词汇是公式化的,似乎除了预制之外,还以(半固定的)块形式存储。因此,在提出的词典中,我们进一步融入了“公式序列”,可能更好地涵盖词汇知识仓储。
本文介绍了几种方法:一种基于居民分离的方法,称为SEQ2RES,另一种基于多标签分类,称为BigRu+Q2L。第三种方法将它们结合到两个阶段的模型中。与以前的分离不同,将传感器事件分配给居民一一将传感器事件分配给居民,SEQ2RES采用序列到序列(SEQ2SEQ)[18] ARCHITCOUNT。它对整个传感器序列进行建模,并基于建模上下文生成分离的序列。另一方面,Bigru+Q2L使用注意机制不仅在活动标签之间,而且在标签和特征之间进行构成相关性。这可以实现更准确,更灵活的多标签分类。最后,这两种方法是在一个模型中组合在一起的,该模型将居民信息分开,同时考虑居民活动的相关性。
近年来,在全球化和结构调整的某些条件下,区域经济的作用发生了重大变化。变化过程对于分析区域经济和制定区域经济规划至关重要。发展中经济体往往依赖于产业和国家政策。现代研究倾向于参与该领域的重要因素,如能源强度、劳动力技能、当地产业、资源和当地专业知识。此外,在这项研究中,为了开始发展区域经济并在该领域进行革命以将其与新技术联系起来,我们训练了深度学习算法来收集因素以完美地管理它们并对未来经济做出良好的预测。混合序列到序列 (seq2seq) 深度学习算法以过去几年的先前信息为基础,并运行系统将预测结果数据与当前信息进行比较,以评估未来几年要认证的方法。
支持的 ML 算法包括:1. 监督/分类 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、逻辑回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。2. 监督/回归 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、线性回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。 3. 时间序列/预测 - 自回归综合移动平均线 (ARIMA)、长短期记忆 (LSTM)、Prophet、Seq2Seq、时间卷积网络 (TCN)、NBeats、Autoformer、TCMF。4. 时间序列/异常 - 自动编码器、DBSCAN、椭圆包络、孤立森林、K-Means、一类 SVM。
扩散概率模型 扩散概率模型是一类潜在变量模型,常用于图像生成等各种任务(Ho 等人,2020 年)。正式而言,扩散概率模型通过对数据点在潜在空间中扩散的方式进行建模来捕获图像数据,这是受统计物理学启发的。具体来说,它们通常使用经过变分推理训练的马尔可夫链,然后逆转扩散过程以生成自然图像。一个值得注意的变体是稳定扩散(Rombach 等人,2022 年)。扩散概率模型也用于 DALL-E 和 Midjourney 等商业系统。生成对抗网络 GAN 是一类具有自定义对抗学习目标的神经网络架构(Goodfellow 等人,2014 年)。GAN 由两个以零和博弈形式相互竞争的神经网络组成,从而生成特定分布的样本。正式来说,第一个网络 G 称为生成器,用于生成候选样本。第二个网络 D 称为鉴别器,用于评估候选样本来自期望分布的可能性。得益于对抗性学习目标,生成器学习从潜在空间映射到感兴趣的数据分布,而鉴别器则将生成器生成的候选样本与真实数据分布区分开来(见图 2)。(大型) 语言模型 (大型) 语言模型 (LLM) 是指用于建模和生成文本数据的神经网络,通常结合了三个特征。首先,语言模型使用大规模、顺序神经网络(例如,具有注意力机制的 Transformer)。其次,神经网络通过自我监督进行预训练,其中辅助任务旨在学习自然语言的表示而不存在过度拟合的风险(例如,下一个单词预测)。第三,预训练利用大规模文本数据集(例如,维基百科,甚至多语言数据集)。最终,语言模型可以由从业者使用针对特定任务(例如,问答、自然语言生成)的自定义数据集进行微调。最近,语言模型已经发展成为所谓的 LLM,它结合了数十亿个参数。大规模 LLM 的突出例子是 BERT(Devlin 等人,2018 年)和 GPT-3(Brown 等人,2020 年),分别具有 ∼ 3.4 亿和 ∼ 1750 亿个参数。提示是语言模型的特定输入(例如,“这部电影很精彩。从人类反馈中进行强化学习 RLHF 从人类反馈中学习顺序任务(例如聊天对话)。与传统强化学习不同,RLHF 直接从人类反馈中训练所谓的奖励模型,然后将该模型用作奖励函数来优化策略,该策略通过数据高效且稳健的算法进行优化(Ziegler 等人,2019 年)。RLHF 用于 ChatGPT(OpenAI,2022 年)等对话系统,用于生成聊天消息,以便新答案适应之前的聊天对话并确保答案符合预定义的人类偏好(例如长度、风格、适当性)。提示学习 提示学习是一种 LLM 方法,它使用存储在语言模型中的知识来完成下游任务(Liu 等人,2023 年)。一般而言,提示学习不需要对语言模型进行任何微调,这使其高效且灵活。情绪:“),然后选择最可能的输出 s ∈{“positive”,“negative”} 而不是空间。最近的进展允许更复杂的数据驱动提示工程,例如通过强化学习调整提示(Liu et al.,2023)。seq2seq 术语序列到序列(seq2seq)是指将输入序列映射到输出序列的机器学习方法(Sutskever et al.,2014)。一个例子是基于机器学习的不同语言之间的翻译。此类 seq2seq 方法由两个主要组件组成:编码器将序列中的每个元素(例如,文本中的每个单词)转换为包含元素及其上下文的相应隐藏向量。解码器反转该过程,将向量转换为输出元素(例如,来自新语言的单词),同时考虑先前的输出以对语言中的模型依赖关系进行建模。seq2seq 模型的思想已得到扩展,以允许多模态映射,例如文本到图像或文本到语音的映射。Transformer Transformer 是一种深度学习架构(Vaswani 等,2017),它采用自注意力机制,对输入数据的每个部分的重要性进行不同的加权。与循环神经网络 (RNN) 一样,Transformer 旨在处理顺序输入数据(例如自然语言),可用于翻译和文本摘要等任务。但是,与 RNN 不同,Transformer 会一次性处理整个输入。注意力机制为输入序列中的任何位置提供上下文。最终,Transformer(或一般的 RNN)的输出是文档嵌入,它呈现文本(或其他输入)序列的低维表示,其中相似的文本位于更近的位置,这通常有利于下游任务,因为这允许捕获语义和含义 (Siebers et al., 2022)。变分自动编码器 变分自动编码器 (VAE) 是一种神经网络,它被训练来学习输入数据的低维表示,方法是将输入数据编码到压缩的潜在变量空间中,然后从该压缩表示中重建原始数据。VAE 与传统自动编码器的不同之处在于,它使用概率方法进行编码和解码过程,这使它们能够捕获数据中的底层结构和变化,并从学习到的潜在空间中生成新的数据样本 (Kingma and Welling, 2013)。这使得它们不仅可用于异常检测和数据压缩等任务,还可用于图像和文本生成。零样本学习/小样本学习 零样本学习和小样本学习是指机器学习处理数据稀缺问题的不同范例。零样本学习是指教会机器如何从数据中学习一项任务,而无需访问数据本身,而小样本学习是指只有少数特定示例的情况。零样本学习和小样本学习在实践中通常是可取的,因为它们降低了建立 AI 系统的成本。LLM 是小样本或零样本学习器(Brown 等人,2020 年),因为它们只需要一些样本即可学习一项任务(例如,预测评论的情绪),这使得 LLM 作为通用工具具有高度灵活性。
摘要 - 该论文重点是将生成技术集成到空间数据挖掘中,考虑到时空数据的显着增长和多样性。使用RNN,CNN和其他非生成技术中的广告,探索者探索了其在捕获时空数据中捕获时间和机关依赖性方面的应用。然而,诸如LLM,SSL,SEQ2SEQ和扩散模型之类的生成技术的出现已经为进一步增强时空数据挖掘提供了新的可能性。本文对基于生成技术的时空方法进行了全面的分析,并引入了专门为空间数据挖掘管道设计的标准化框架。通过提供详细的综述和使用生成技术的时空方法的新颖分类学,可以更深入地了解该领域中使用的各种技术。此外,本文强调了有希望的未来研究方向,敦促研究人员深入研究时空数据挖掘。它强调需要探索未开发的机会并推动知识的界限,以解锁新的见解并提高时空数据挖掘的有效性和效率。通过整体生成技术并提供标准化的框架,该论文有助于推进该领域,并鼓励研究人员探索在时空数据挖掘中生成技术的巨大潜力。
