fi g u r e 1概念表示以来,实施两种不同的措施(a和b)来增强SOC的影响,因为实施了一项措施来增强SOC。(a)SOC股票[m,质量单位]和(b)土壤碳固存(CS)[M t,质量×时间单位]定义为剩余碳曲线下的面积(a)曲线的曲线下(面板A中的曲线的积分)。绿色箭头(a)表示Don等人所定义的总C隔离。(2023)在t 1和t 2时进行a和B。csi,t(b)中的t指示一次t的土壤碳固醇。
自然资源研究所芬兰(Luke),Latokartanonkaari 9,FI-00790赫尔辛基,芬兰B环境科学司,橡树岭国家实验室,贝塞尔山谷路1号,奥克山脉,田纳西州田纳西州37830,美国田纳西州37830在Zvolen,T.G。Masaryka 24, 96001 Zvolen, Slovakia e Forest Science and Technology Centre of Catalonia (CTFC), 25280 Solsona, Spain f Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain g Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain h School of生物科学,阿伯丁大学。23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT
土壤吸收大量二氧化碳(CO2)。土壤有机碳(SOC)在热带地区研究了其重要性。这项研究研究了森林管理如何增加SOC隔离并恢复退化的热带生态系统。续集土壤有机碳可以增强土壤的生育能力并减少土地降解和温室气体(GHG)排放。土壤结构,聚集,浸润,动物和营养(C,N,P和S)循环得到改善。森林生态系统管理改善了C隔离,缓解气候变化和降级土地康复。与有机残留物管理和固定氮植物结合使用时,会造成或重新修饰的边缘或降解土地增强了生物量和土壤中的C储存,并支持土壤状况,食品生产力,土地翻新以及温室气体的恢复。隔离的C增加了生物学,物理和化学生育能力,从而改善了土壤健康。关键字:热带森林;土壤碳;森林管理;气候变化;土壤肥力
Binder content ( B ) [kg/m 3 ] 303 321 361 344 313 413 Binder content ( b ) [wt.%] 12.5 13.2 14.8 14.3 12.9 16.9 Clinker content in binder ( c [wt.%] 95 73 15 67 67 24 Clinker content in concrete [wt.%] 11.9 9.6 2.2 9.6 8.6 4.1 CaO content在Binder(CAO)[wt。%] 64.8 48.9 45.1 46.9 57.8 47.3混凝土中的CAO含量[wt。%] 8.1 6.5 6.5 6.7 6.7 6.7 6.7 7.5 8.0 8.0
新部分。sec。1。(1) The legislature finds that the state 7 environmental policy act requires broad consideration by lead 8 agencies of impacts of proposed government actions on diverse aspects 9 of the natural and built environments and human health.While the 10 state environmental policy act requires this broad analysis of all 11 environmental impacts of a proposed action, the state environmental 12 policy act checklist adopted by the department would be more accurate 13 and useful in reflecting the obligations of project proponents and 14 lead agencies if it more accurately incorporated crucial state and 15 local adopted policies relating to addressing climate change.This 16 includes improved identification of, or guidance to assess, the 17 potential to improve or reduce carbon sequestration in state forests.18 The flaws of the current checklist and guidance, as compared to the 19 actual statutory obligations of lead agencies, has led to several 20 court decisions invalidating the state environmental policy act 21
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
结果:结果表明,不同植物物种和类型的碳固相能力表现出显着差异,p值小于0.05。就单位冠层投影面积的每日碳固隔而言,排名如下:常绿树>常绿灌木>落叶树>落叶灌木。对于总植物碳固存,排名是:常绿树>落叶树>常绿灌木>落叶灌木。常绿树在两个碳固存指标中表现出色,每日平均每单位碳固醇固定面积投影面积,整个植物分别为18.0024 g/(m 2·d)和462.28 g/d。该研究还观察到季节性变化,与春季和冬季相比,秋季和夏季的碳固剩速度更高。在夏季,每单位冠层投影面积的平均每日碳螯合物和整个工厂分别为11.975 g/(m 2·D)和161.744 g/d,而在秋季,这些值为13.886 g/(m 2·D)和98.458 g/d。季节性变化,与春季和冬季相比,秋季和夏季的碳固次率更高。此外,在四个居民区进行了CO 2浓度,从而提供了对碳固存的空间和时间动力学的见解。
景观管理中的关键问题,无论是公共还是私人,是对影响植被,生态系统健康以及因此生态系统服务(ESS)的干扰事件的缓解。尽管许多研究发现由于昆虫侵扰而导致的树木死亡率显着,但仍然对这些侵扰如何改变ESS及其相关的经济价值仍然没有足够的了解。解决这一研究差距可以帮助森林经理和决策者精炼和实施自适应管理实践和政策,同时增强森林及其ESS的弹性。我们调查了树皮甲虫暴发对三种ESS(木材供应,保留率和碳固存)在北加州和内华达州北部的Tahoe地区的影响。使用景观仿真模型Landis-II,我们研究了业务与惯常的管理方案和增强的管理场景之间的差异,该场景在地上树生物量和受甲虫暴发影响的ESS数量方面进行了研究。由于昆虫侵扰也受到气候的影响,因此两个管理场景中的每一个都认为三种不同的气候场景:一种具有平均历史气候的场景(没有气候变化);从气候跨学科研究模型中的较温暖,更湿的场景(Miroc);以及来自中心国家中心的较干燥,更干燥的场景(CNRM)。的结果表明,温暖,更干燥的气候导致甲虫引起的树木死亡率比潮湿,凉爽的气候更严重,从而对ESS产生更大的负面影响。每年的ES值估计损失约为0.2至80万美元。增强的管理层比业务态度更有能力,可以防止对树木和ESS的甲壳虫损害。
该研究旨在调查M20级混凝土使用生物炭和铁矿石尾粉(ITP)的CO 2序列能力。通过缓慢的玉米毒酸性热解制备生物炭。将所获得的生物炭分为两个系列未经处理的生物炭,并通过加热进行预处理,直到燃烧。在0%,5%,10%和15%的情况下,混凝土中的细骨料被代替。通过压碎和筛分铁矿石废物获得的铁矿石尾粉。将水泥以0%,25%和50%的重量代替ITP。水与粘合剂比保持在0.45,在超增塑剂的帮助下保持混凝土的可工程性。进行了抗压强度测试,CO 2摄取,孔隙率和汞侵入孔隙测试,以了解混凝土中生物炭和ITP的影响。测试结果表明,含有25%ITP替代的预处理的生物炭的混合物具有最大CO 2隔离能力,而不会损害其强度特性。