1 Angie Research,1 Pl。Samule The Champlain,Pais Porce,双鱼座,92930 PARAS,法国2部门或电动机,系统和金属工程,Turop Swindth 131,Switching Park。 34,53850 Lappeenran Ranta,芬兰4电气和计算机建筑,K.U.Seecte,Castle Park Arenberg,Tor Park 8310,Tor Park 8310,3600,3600,3600,比利时6大学,比利时6大学6 University 6 University 6 University 6 University 6 University 6 University 6 University,Belgium 6 University 6 University。已经是“蒙特雷”(UQAM),De´ party the Strat',您,Noccessabilite的社交环境,E´Coles Sciences(ESG),Opian Economic Labory Labory Labory,University'Place palary,Place,Place,Place D Marre´t Marre´t Marre´the后者The后者,75016 Paris,French 8 castainalibal and Infrastraster and Canver Team,33美国9部门或核科学,以及工程学,弥撒和工程,马萨诸塞州或技术(麻省理工学院),美国马萨诸塞州剑桥市10隆德大学可持续性研究中心(卢斯科斯),瑞典隆德大学11 Hyrogen Laboratory 11 Hyrogen实验室或AV。Moniiz地区〜A,207,里约热内卢21941-594,巴西12 Engie Impact,Simon Bolivaan 34 1000出发,大学或Tex。停止C2200,TX 78712-1591,美国,美国14 KU LEUVEN,ECOM,BEL GEL,BELG,BEL GELIM,BEL GELIM,BELIM,或经济,或经济学,或经济学,或经济学,或经济学,或经济,纽约市,或经济比利时比利时鲁道鲁文卢文,比利时卢文 *corpoundce:markety@yhoo.nh https://doi.org/10,1016/j.isci.sci。 2024.1111111111111111111111111111111111111111111111111111111111111111111111ME
在“排放| CO2 | afolu”中作为AR6场景类别中AR6 Land CDR的下限代理。图中仅考虑了所有三个变量的场景(方案n = 725)。Gidden等人的重新分析中的土地CDR场景。与国家温室气体库存一致,与其他两个变量相比,2020年基线的差异显示。实线在各场景中显示中位数,而阴影区域显示最小最大范围。注意:我们遵循AR6场景数据库的惯例,以正数报告CDR,而Gidden等人的重新分析中的土地CDR变量。显示正面和负CDR 75
3背景4目标6结果和讨论3.1欧盟设定的碳固存的目前是什么?3.2能够隔离碳的不同类型的景观类型?3.3如果它们处于最佳的保护/恢复状态,以及他们目前的碳量分别分别存储,它们各自的存储能力将是什么?3.4欧盟在欧盟中自然碳固存的能力有什么能力?3.5欧盟对天然碳固存的主要威胁是什么?3.6在土地上种植生物能源作物的成本的机会是什么?3.7登记欧洲森林以进行生物能源的机会成本是多少,何时可以将这些森林生长以使更多的碳隔离?40结论42参考
3如果在合格的CDM方法的GS4GG列表中不存在任何CDM方法,则PD/CME可以联系到standard@goldstandard.org,以获取进一步的步骤。4提交验证时间是VVB合同以验证项目的日期,如VVB在审计报告中正式确认。5提交验证期续订的验证时间是VVB重新验证项目的日期,如VVB在审计报告中正式确认。
©2024作者。除非另有说明,此期刊上发表在《全球变化生物学》上发表的期刊文章的版本是通过谢菲尔德大学研究出版物和版权政策提供的,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该媒体允许在任何媒介中使用无限制的使用,分配和在任何媒介中使用,前提是原始工作适当地使用了原始工作。 要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/此期刊上发表在《全球变化生物学》上发表的期刊文章的版本是通过谢菲尔德大学研究出版物和版权政策提供的,根据创意共享归因4.0国际许可(CC-BY 4.0)的条款,该媒体允许在任何媒介中使用无限制的使用,分配和在任何媒介中使用,前提是原始工作适当地使用了原始工作。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/
Pharma Innovation Journal 2024; 13(10):27-33 ISSN(E):2277-7695 ISSN(P):2349-8242 TPI 2024; 13(10): 27-33 © 2024 TPI www.thepharmajournal.com Received: 24-07-2024 Accepted: 02-09-2024 Trishala Kalyani Department of Agronomy, School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India Anuj Singh Payal Department of Agronomy, School of Agriculture, Graphic Era Hill印度北阿坎德邦Dehradun大学,Simran Kumari农艺学系,图形农业学院,图形时代希尔大学,印度Dehradun,Dehradun,印度北阿拉克邦,Jyoti Bala农学系,Swaminathan女士,Swaminathan女士,Shoolinii Inoverasation of Biotechni and Inding noessions Sciisens and Sciiens,Sciiznoly Sciiss,Himach prad pradate hemvati nandan bahuguna Garhwal大学Agronomy,印度北阿坎德邦Srinagar,Srinagar
Table 1: Primary data source 13 Table 2: Secondary data sources 13 Table 3: Crisil- plantation sites 16 Table 4: Crisil- observed plantation 18 Table 5: Species-wise height and girth - Taranagar 48 Table 6: Species-wise height and girth- Sagar Island 49 Table 7: Species-wise height and girth- Kakdwip 49 Table 8: Species-wise height and girth – Perambur 50 Table 9: Species-wise身高和腰间 - bhatsai 51表10:物种高度和腰围 - ghatkopar 51表11:物种高度和腰围 - bhyander 52表12:物种高度和腰围 - 腰带53表13:生存率计算54表14:定性参数56效率56次表15:Qualties 56 Qualtiatiatiation 56级别56:careforatival 56:care 56:care care 56:carive 56:碳螯合电势 - 泰米尔纳德邦60表18:碳固执势-Maharashtra 61表19:NDVI-西孟加拉国的种植地点63表20:NDVI- NDVI-泰米尔纳德邦的种植地点63表21:NDVI -NDVI- NDVI- Maharashtra 64 Tabter 22:SDG SDG SDG SDG SDGIAGE和COVEDAGE 65
e-issn:2618-0618 p-issn:2618-060x©农艺学www.agronyjournals.com 2024; 7(9): 14-19 Received: 18-07-2024 Accepted: 22-08-2024 VM Chaudhari Assistant Professor, Department of Horticulture, College of Agriculture Madhav University, Pindwara, Sirohi, Rajasthan, India Prayasi Nayak Assistant Professor, Department of Agriculture and Allied Sciences, CV Raman Global University, Janla Khordha, Odisha, India艾伦·沙沙埃尔·乔治(Allen Shamuel George)水产养殖系,渔业学院,安得拉邦(Andhra Pradesh)渔业大学,内洛尔(Nellore),安得拉邦(Andhra Pradesh),印度安得拉邦(Andhra Pradesh)学者,造林和农林业,Sam Higginbottom农业,技术与科学大学,(Shuats),Prayagraj,北方邦,印度北方邦,Subhadeep Karak National远程感应中心,海德拉巴德,海德拉巴德,海德拉巴,Teleangana,Teleangana,Teenangana,India S Anbarasan s Anbarasan Ph.d.D. Annamalai大学泰米尔纳德邦农学系研究学者,印度Bhavanasi Sai Meghana PG学者(园艺),花卉文化和美化环境,Y.S.R.博士园艺大学,园艺学院,阿南塔拉吉帕塔,安得拉邦,印度安得拉邦印度安得拉邦安得拉邦渔业大学渔业科学学院乔治水产养殖系
四个经过测试的回归模型中的每个。性能结果是指与回归验证数据集中的实际变量相比,预测变量之间的比较。面板(b)显示了实际(“碳固存|土地利用”)与预测的土地CDR和AR6净负afolu Co 2排放(基于“排放| CO2 | Afolu'的负值| co2 | afolu'),作为在AR6中cdr cddry consemational Scenario的较低限制的代理。该图中的预测数据基于k-neartimt邻居回归。实线在各场景中显示中位数,而阴影区域则显示5-215
背景和目标:红树林的主要功能是沉积物中的碳固执。这项研究旨在确定各种红树林和环境参数中沉积物中碳含量的差异。方法:这项研究是在佩萨瓦兰(Pesawaran)作为天然红树林进行的,在南坎普(South Lampung)作为印度尼西亚修复的红树林进行。目的抽样方法。使用直径为47.46千米的聚氯乙烯管和高度为30厘米的聚氯乙烯管进行沉积物采样。 所测得的沉积物参数是块状密度,碳储量和固存。 测量的环境参数包括沉积物纹理,氢的潜力,温度,盐度和总溶解固体。 使用主成分分析进行了统计分析,以确定有机碳库存与环境参数之间的关系。 的发现:研究结果表明,天然红树林(Pesawaran)的有机碳值比修复的红树林(South Lampung)的有机碳值高2.2±0.32%,为0.9±0.25%。 主成分分析结果表明,有机碳,二氧化碳当量,碳储备和碳固换具有正相关特性受盐度,淤泥和粘土影响,而负相关特性则受温度,总溶解固体和沙子的影响。 沉积物质地的分布倾向于在修复的红树林中显示出更多的淤泥,而天然红树林往往在沙子和淤泥之间具有相同的成分。沉积物采样。所测得的沉积物参数是块状密度,碳储量和固存。测量的环境参数包括沉积物纹理,氢的潜力,温度,盐度和总溶解固体。使用主成分分析进行了统计分析,以确定有机碳库存与环境参数之间的关系。的发现:研究结果表明,天然红树林(Pesawaran)的有机碳值比修复的红树林(South Lampung)的有机碳值高2.2±0.32%,为0.9±0.25%。主成分分析结果表明,有机碳,二氧化碳当量,碳储备和碳固换具有正相关特性受盐度,淤泥和粘土影响,而负相关特性则受温度,总溶解固体和沙子的影响。沉积物质地的分布倾向于在修复的红树林中显示出更多的淤泥,而天然红树林往往在沙子和淤泥之间具有相同的成分。自然和修复的红树林中氢条件的潜力没有明显的值差异。佩萨瓦兰的盐度被归类为天然红树林,由于潮汐的影响,直接面对海岸线。与此同时,在南坎普(South Lampung)被归类为已修复的红树林,由于较长的干旱季节,盐度较低,而运河无法支撑进入红树林的水。结论:研究地点的有机碳含量受到根茎型叶片的年龄较大的影响,而根瘤菌粘膜粘膜和ceriop thakal类型的红树林的影响。自然红树林的碳固相值值为1.65–3.14,而修复的红树林的碳固化速率值则显示为0.29–1.25,因此,自然红树林中的速率比康复的成熟楼层高(2-3倍)。