分散的学习(DL)启用与服务器的协作学习,而无需培训数据,可以使用户的设备留下。但是,DL中共享的模型仍然可用于推断培训数据。传统的防御措施,例如差异隐私和安全汇总在有效地保护DL中的用户隐私方面缺乏牺牲模型效用或效率。我们介绍了Shatter,这是一种新颖的DL方法,其中节点可以创建虚拟节点(VN S)代表他们传播其完整模型的块。这通过(i)防止攻击者从其他节点收集完整模型,以及(ii)隐藏产生给定模型块的原始节点的身份。从理论上讲,我们证明了破碎的收敛性,并提供了正式的分析,揭示了与在节点之间交换完整模型相比,Shatter如何降低攻击的效力。我们评估了与现有DL算法,异质数据集的融合和攻击弹性,并与三个Standard隐私攻击进行评估。我们的评估表明,破碎不仅使这些隐私攻击在每个节点运行16个VN时不可行,而且与标准DL相比,对模型实用程序产生了积极影响。总而言之,Shatter在保持模型的效用和效率的同时,增强了DL的隐私。
fi g u r e 2单倍型网络和四种培养的正弦素化种类的单倍型牙齿素(A),Kappaphycus alvarezii(b),K。Striatus(C),K。Malesianus(K。Malesianus(d),K。Malesianus(d),使用MiTochrial sequence cox-3--在单倍型网络中,节点的大小与GenBank中的序列数有关,内圆的颜色与地理起源有关,外圈的颜色表示样品起源(野生,野生本地,野生非本地)。对于地理分布样品,根据其在海洋生态区中的采样位置进行分组(Spalding等,2007年)。请注意,这不一定反映本地多样性,因为分子信息偏向耕种标本,并包括引入标本(有关主要简介事件,请参见图1)
野生动植物管理是监督和保护野生动植物种群及其栖息地的实践,以确保生物多样性,生态系统稳定以及动物和人类的幸福感。随着人类活动继续改变生态系统,野生动植物管理的重要性在近几十年中显着增长,从而导致栖息地丧失,破碎和物种的衰落[1]。该学科结合了生物学,生态学,法律和经济学原则,以创建可持续的战略,以保护野生动植物,同时考虑人类需求。野生动植物管理涉及监测物种种群,栖息地恢复,保护计划以及影响野生动植物的其他人类活动的调节。在本文中,我们将探讨野生动植物管理的关键组成部分,面临的挑战以及为维持野生动植物保护与人类发展之间平衡所采用的策略[2]。
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
摘要:风险识别和缓解对于在不断变化的供应链管理领域(SCM)中保持韧性和效率至关重要。现代供应网络中固有的复杂性和不确定性通常太复杂了,无法有效解决传统风险管理技术。为了增强供应链管理中的风险检测和管理,本研究探讨了将区块链技术与深度学习混合的混合策略。区块链通过为供应链操作监视提供透明和分散的系统来确保数据完整性和透明度。深度学习可以改善此过程,该过程分析了大量的历史数据和当前数据,以识别模式,预测威胁并提出对策。所提出的系统利用区块链技术的不可侵犯性和深度学习的预测能力来应对诸如欺诈检测,需求预测,供应商评估和中断预测等重要挑战。使用混合自动编码器和基于LSTM的深神经网络可以确保数据集。自动编码器用于降低维度和降低噪声和冗余数据,这些数据将进一步通过基于LSTM的神经网络,以增强基于区块链的交易数据的安全性。
摘要:过去二十年来在数字平台上出现的超级目标广告现在被更有效地理解为调整广告,这是一个充满活力且不断发展的过程,在该过程中,广告在实时对用户进行了不断地“优化”广告。在Rieder和Hofmann(2020)之后,我们旨在为“观察练习”算法调整的数字广告制定一个框架。我们借鉴了澳大利亚广告天文台的研究以及关于数字酒精广告的多年研究项目。在这些项目中,我们构建了自定义的工具,以从平台广告库中收集广告,并通过公民科学家的数据捐赠。我们认为,数字广告的力量越来越符合其调整的能力。平台的广告透明度工具引起了我们对广告的关注,但是我们需要发展能够观察动态的社会技术调整过程的能力。我们概念化了广告的“调谐序列”的可视化,作为广告“库”的替代方法。我们认为,开发观察这些调谐序列的能力更好地阐明了建立公众理解和问责制所需的观察方式,他们都在寻找公众的理解和问责制。
尽管对情感的定义缺乏科学共识,但通常认为它们涉及思想,身体和行为的几种修改。尽管心理学理论强调了情绪的多元素特征,但对大脑中这种组成部分的性质和神经结构知之甚少。我们使用多元数据驱动的方法将广泛的情绪分解为功能性核心过程并确定其神经组织。20名参与者观看了40个情感剪辑,并以32个组件特征的特征定义了119个情感时刻。结果表明,在一组与估值评估,享乐体经历,新颖性,目标 - 相关,方法/避免倾向和社会关注相关的组件过程中编码组件过程的大脑网络中,有不同的情绪从协调的活动中出现。我们的研究超越了以前的研究,该研究通过强调新方法与理论驱动的建模如何为情感神经科学提供新的基础,并揭示人类情感经验的功能结构,从而超越了侧重于分类或维情感的研究。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。3073-3086,文章ID:IJCET_16_01_215在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue=1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_215©iaeme Publication
摘要随着移动应用程序越来越多地处理敏感用户数据,确保隐私已成为开发人员和用户的主要关注点。Android作为主要的移动操作系统,提供了许多工具和API,以支持隐私的机制。本文探讨了在Android应用中实施隐私机制的各种策略和最佳实践。它深入研究了Android的内置隐私功能,用于数据匿名化的高级技术,加密和安全通信以及增强用户隐私的第三方库。此外,统计见解说明了现代应用生态系统中以隐私开发的意义。