GDPR,Art 32。 […]控制器和处理器应采取适当的技术和组织措施,以确保适合风险的安全水平,包括适当的外套:a)假名和GDPR,Art 32。[…]控制器和处理器应采取适当的技术和组织措施,以确保适合风险的安全水平,包括适当的外套:a)假名和
来自有或没有错过横向动量(E MISS T)的各种搜索的广泛搜索结果,用于限制一个两higgs-doublet模型(2HDM),并介导了普通和暗物质和暗物质(2HDM+ a)之间的相互作用,并介导相互作用。在2015 - 2018年期间,在大型强子对撞机的Atlas检测器记录的质子 - 质子碰撞数据中,质子 - 普罗顿碰撞数据的分析最多可消耗139 fb 1。三个最敏感搜索的结果是统计上的。这些搜索目标特征是带有巨大的t和lepton腐烂的Z玻孔;大小姐T和Higgs玻色子腐烂到底部的夸克;并分别在最终的夸克和底部夸克的最终状态下产生带电的希格斯玻色子。的约束是针对2HDM+ a中几个常见和新基准的场景得出的。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
众所周知,对于几乎所有现代经典和量子加密任务来说,计算假设都是必需的。对经典隐身性的最小假设是单向函数(OWF)的存在。该假设已知与许多其他加密应用的存在相当,例如伪数编号生成,伪界函数,数字签名,对称键加密和承诺(请参阅,例如,参见[GOL01,GOL04])。量子设置呈现出截然不同的图片:已知各种量子原始图,足以构建密码学,但可能比单向功能弱。最近,Tomoyuki Morimae创造了Microcrypt一词,是Impagliazzo的五个世界[IMP95]的补充,是指此类量子原始素(及其加密应用)2。MicroCrypt的租户之一是伪兰态(PRS),首先由JI,Liu和Song [JLS18]引入。这是一个有效生成的量子状态{| ϕk⟩}k∈{0,1} n,因此很难在多个副本上区分(a)|的多个副本。 ϕ k⟩从家族中采样,(b)均匀(HAAR)随机量子状态。ji,liu和Song还提供了OWF的Black Box结构。许多加密应用是基于MicroCrypt假设而知道的。也许更令人惊讶的是,MicroCrypt还包含一些隐藏狂的任务,即安全的多方计算[MY22B,BCKM21,GLSV21]和Quantum Publicum public Keys [BGHD + 23]。Subsequent to [ JLS18 ], many other tenants of Microcrypt have been introduced, such as pseudorandom function-like states ( PRFS ) [ AGQY22 ], efficiently samplable statistically far-but-computationally-indistinguishable pairs of (mixed) quan- tum states ( EFI pairs) [ Yan22 , BCQ23 ], one-way state generators [ MY22b ]和伪兰态具有破坏证明[BBSS23]。到目前为止,所有主要微型晶体3的变体已被证明在微晶中,包括对称 - 关键加密,承诺(最近,也承诺对量子状态[GJMZ23]),PRGS,PRFS,PRFS,GALBLED CICUCTITS,GALBLED CICUCTITS,MESSAGE AUTHERTICATION代码和数字信号。引起惊喜的关键因素是不可思议的和鲁迪奇的单向功能(微型级)和公钥加密4和遗忘转移(Cryptomania)[IR89]之间的分离。新的结构规定了古典不可能,因为它们涉及量子状态,例如承诺和多方计算取决于量子通信,加密方案具有量子密文。这些量子原语的证据比微小的弱点弱来自Kretschmer的PRS和OWF S [KRE21]的量子甲骨文分离。分离的甲骨文由一个族{u n}n∈N组成,其中u n是指数列表的许多HAAR随机n -qubit nimaries {u k}k∈{0,1} n。相对于此甲骨文,有一个简单的prs结构:k∈{0,1} n,让| ϕ k⟩:= u k | 0 n⟩。请注意,如果我们只考虑UNINERIES U K在标准基础上的行动,即一组状态U K | x⟩对于x∈{0,1} n,因此,对于每个n,可以将kretschmer的甲骨文视为提供2 2 2 n“本质上是Haar随机”状态5。在另一项作品中,Bouland,Fefferman和Vazirani [BFV19]显示了6 a prs构造相对于一个家庭{u n}n∈N,其中u n =(u,u - - 1)对于HAAR Random
铜绿假单胞菌中的耐药性已通过多种机制介导,它们中排出泵介导的耐药性是耐药性最重要的机制之一。MEXAB-OPRM外排泵,能够识别和排出细菌细胞中各种结构无关的化合物,赋予对铜绿假单胞菌中广泛的抗生素的抗性。本研究的目的是筛选在印度传统医学中使用的药物,以发现一些能够抑制铜绿假单胞菌中的Mexab-Oprm泵的有效化合物,并研究具有抗抗性抗生素的特征性外排泵抑制剂的协同作用(MDR)抗生素(MDR)抗生素(MDR)菌株。在本研究中使用了100个临床分离株,四个敲除和1个MTCC-741标准菌株。所有100个临床分离株均已处理用于抗生素易感性测定法和ETBR琼脂卡特轮测定法以测定MDR表型。总共筛选了40种植物,以存在具有外排泵抑制活性的化合物。用三种不同的抗生素进一步探索了表现出EPI活性的植物的协同作用。十种植物提取物已显示出相当大的EPI活性,并且在10个活性提取物中,只有一种末期佳肴果实的甲醇提取物显示出与A组(环丙沙星,四环素和氯霉素)的协同活性。T. chebula果实提取物的分馏和纯化提供了乙酸乙酯,该乙酸酯与A组抗生素以及显着的EPI活性一起显示了协同活性。本研究的结果得出的结论是,乙酸酯是铜绿假单胞菌中过度表达Mexab-Oprm外排泵的有效EPI,可以与耐药组A抗生素一起使用,以抗多药抗性P. eruginosa。
摘要。在卫星遥感应用中,增强了2级(L2)算法的精度,在很大程度上依赖于对紫外线(UV)(uv)的表面反射的准确估计(visible(vis)光谱。然而,L2算法与表面反射检索之间的相互依赖性构成了挑战,因此需要采取另一种方法。为了解决这个问题,许多卫星属性会产生兰伯特等效的反射性(LER)产品作为先验的表面反射数据。但是,这通常会导致这些数据低估。这项研究是使用半经验的双胎反射分布函数(BRDF)模型得出的背景表面反射(BSR)的适用性的第一个。这项研究将BRDF模型的应用在440 nm处的高光谱卫星数据进行了应用,旨在提供更现实的前段表面反射数据。在这项研究中,使用了地理环境监测光谱仪(GEMS)数据,对GEMS BSR和GEMS LER进行了比较分析显示,相对根平方误差(RRMSE)的精度有3%的相对根平方误差(RRMSE)的精度有所提高。此外,跨不同土地类型的时间序列分析表明,BSR比LER表现出更大的稳定性。为了进一步验证,使用地面真实数据将BSR与其他LER数据库进行了比较,从而产生
可靠、确定性地生产值得信赖的高质量单光子是离散变量光学量子技术的关键组成部分。对于基于单光子的完全纠错量子计算系统,估计需要光子源以超过 1 GHz 的速率产生可靠的光子流 (Vigliar 等人,2021)。光子复用是一种潜在的解决方案,其中低概率源与交换网络相结合,将成功的生产事件路由到输出,但需要极快的单光子切换和超低的损耗率。在本文中,我们研究了开关元件的具体属性,并提出了一种新设计,该设计利用了常见开关元件(例如导热垫)的一般单向属性。通过将多个开关引入基本的时间复用设备,我们可以在以更快的速率泵送的多路复用源中使用慢速开关元件。我们在多个错误通道下对这种设计进行建模,并表明预期性能现在受到集成光子芯片组内光波导的固有损耗率的限制。虽然开发的设计没有达到必要的 1 GHz 光子速率,但我们展示了当底层技术改进时可能变得有用的设计元素。
Kikkoman Takasago Plant 1-1-1 Niihama,Arai-Cho,Takasago-shi,Noogo 676-8510,日本,位于Kikkoman Food Products Takasago Plant
© 2018 Réunion des musées nationaux / Mathieu Rabeau 标题:伊朗书法家米尔·阿里·哈拉维 (Mir Ali Haravi) 的 Golshan 相册中的书法页面,带有莫卧儿具象边框。 对象类型:相册页面 艺术家/创作者:书法由米尔·阿里·哈拉维 (Mir 'Ali Haravi) 完成,边框由莫卧儿艺术家设计 创作地点:莫卧儿帝国 (印度;伊朗) 日期:16 世纪和 17 世纪前 25 年 (1500 – 1600 年和 1600 – 1625 年) 材料/介质:纸上水彩、墨水和金色 尺寸:220 x 111 毫米(书法); 402 x 263 毫米(页)(高 x 宽) 出借人名称:Musée du Louvre, Département des Arts de l'Islam 出借人地址:75058 PARIS Cedex 01, France 藏品号:OA 7155 来源:卢浮宫博物馆于 1916 年根据 Georges Marteau 的遗赠获得。 1933-45 年间所有权:卢浮宫博物馆 请注意,该物品具有 1933-1945 年的完整出处。
伪随机性是复杂性理论和密码学中的关键概念,捕获了似乎随机与计算结合的对手的概念。最近的作品将计算伪随机性的理论扩展到了量子对象,特别关注类似于HAAR度量的量子状态和单一转换[JLS18,BS19,BFV20]。ji,liu和song [jls18]定义伪兰态(PRS)合奏,为量子状态的一个钥匙家族{| ϕ k⟩}k∈{0,1}κ,从集合中的状态可以在κ中产生。从多项式的许多副本中,ϕ k⟩。他们还定义了一个伪和统一转换(PRU)的集合,就像一组有效实现的单一转换,这些变换在计算上与HAAR量度无法区分。这些定义可以分别视为伪元发生器(PRGS)和伪andom函数(PRFS)的量子类似物。然后,作者提出了假设存在量子安全单向功能的PRSS的结构,并且还为他们猜想的PRU提供了候选PRUS的结构。已知伪随机状态和统一的几种应用。PRS和PRS在量子算法中很有用:在需要与HAAR度量近似的计算应用中,PRS和PRU可能比T -deSigns更有效,这些设计与HAAR度量相似的信息理论近似与T -Chise Indepen -dent -dent的功能相似。1此外,可以使用PRS和PRU(包括量子货币计划,量子承诺,安全的多方交流,一次性的数字签名,某些形式的对称对称性键加密等[JLS18,AQY22,AQY22,MY22B,BCQ23,My223,My23,My233)来实例化多种加密原始。最后,Bouland,Fe Q e Qulan和Vazirani [BFV20]在ADS/CFT对应关系中与所谓的“蠕虫孔生长悖论”之间建立了基本联系。
迄今为止,许多基于培养和基于基因工程的策略、靶向基因操作技术(如启动子工程和 CRISPR 介导的基因编辑)和非靶向方法(如核糖体工程和调节基因的激活/失活)已经使得有效激活隐蔽的 SM-BGC 成为可能 (7,8)。但与上述技术相比,通过共培养微生物来增加次级代谢产物的产生具有简单的优点,因为它不需要事先了解 smBGC 或基因工程工具。共培养复制了生态压力,例如物种间竞争期间的营养缺乏,并导致鉴定出几种完美的生产者和诱导者组合,这些组合可有效促进新型生物活性化合物的合成。