秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
我们访问并挖掘了大量的参考基因组数据集,以确定拷贝数变异和相关的 SNP 变异,以获得基因型独立编辑的最佳靶编辑位点。基因组中存在拷贝数变异和高度多态性的基因序列,使使用 CRISPR、锌指和 TALEN 进行基因组编辑在技术上变得困难。通过核苷酸和氨基酸比对并进行比较序列分析来确定等位基因或额外基因拷贝的评估。根据确定的基因拷贝数和 SNP 的存在,使用多种在线 CRISPR 设计工具设计针对每个基因、伴随等位基因和所有相关途径中的同源物的 sgRNA,以创建敲除以供进一步研究。使用 MultiTargeter 为高度同源序列设计通用 sgRNA,并使用 Sequencher 进行可视化,创建独特的 sgRNA,避免 SNP 和共享核苷酸位置,靶向最佳编辑位点。
sgRNA 而不是 NTC(图 3b,蓝线)。在涉及其他三个 CDE + 基因的竞争性测定中,未观察到 p53 WT 细胞中的反向富集(图 S6)。我们观察到,与 NTC 处理的细胞相比,靶向 NDUFB6 的 sgRNA 诱导的 DNA 损伤明显更高,特别是在 p53 WT 细胞中(图 S7),尽管突变细胞中的编辑效率更高(如图 4c 所示),这表明
靶序列,并使用 PrimeSTAR Max(TaKaRa,日本草津)的寡核苷酸和引物 sgRNA-RV 从 pDR274 载体 26 进行 PCR 扩增 sgRNA 模板,并使用 NucleoSpin 凝胶和 PCR 清理试剂盒(MACHEREY-NAGEL,德国迪伦)进行纯化。使用 CUGA7 gRNA 合成试剂盒(日本东京 Nippon Gene)合成 sgRNA,并使用 NanoDrop Lite 分光光度计(美国马萨诸塞州沃尔瑟姆 Thermo Fisher Scientific)测量其浓度。注射溶液由无 RNase 水中三种 sgRNA(每种 20 pg)、Cas9 蛋白(1 nM,M0646,美国马萨诸塞州新英格兰生物实验室)和酚红(P0290,Sigma-Aldrich)组成。将该溶液注射到1细胞期受精卵或4细胞期胚胎的细胞体中,产生遗传嵌合体,并
方法。第一种方法是将含有 loxP 位点的 ssODN 引入目标外显子两侧的 5' 和 3' 位点。这是通过使用 2 个 sgRNA 完成的。第二种方法使用含有 2 个 loxP 位点的 lssDNA 模板,这 2 个 loxP 位点位于目标 DNA 序列两侧。这种方法使用了 2 个 sgRNA。B. UTSW 转基因核心提供给您的试剂:您向核心支付的 CRISPR 服务费用包括我们用于完成您的项目的 IDT Sp. Cas9 蛋白的费用。如果您的项目涉及使用不同的编辑酶(如 Cas12 或 Cpf),请联系核心工作人员更详细地讨论该项目。C. 了解您的基因的重要细节:使用基因组浏览器(如 NCBI、UCSC 或 ENSEMBl)收集有关您的目标基因的相关信息。这包括任何替代转录本、外显子的数量和重要性、位于特定内含子中的调控基序以及编码序列等细节,以便成功设计 sgRNA 和供体 DNA 模板。使用 MGI- 小鼠基因组信息学来确定是否存在与靶基因敲除相关的已知表型非常重要。了解基因的 KO 是否可能导致致命表型(无论是胚胎还是出生后早期)尤为重要。了解并将此信息传达给核心人员将使我们能够修改用于生成小鼠突变株的条件,以便我们主要创建 KO 等位基因杂合的小鼠。D. sgRNA 的设计:注射受精卵中发生的基因组编辑的效率在很大程度上取决于针对靶标的 sgRNA 的正确设计。此设计的关键组成部分包括:
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
对于表观遗传汇集筛选,对具有强力霉素诱导的 Cas9 等位基因 (KH2/iCas9;杰克逊实验室,库存编号 029415) 的 8 至 12 周龄小鼠实施安乐死,并对总共 100 万个 Lin – Sca-1 + c-Kit + (LSK) 细胞进行分选并用含有表观遗传 sgRNA 文库的慢病毒进行体外转导 (补充表 1) 14,然后移植到 B6/129 受体小鼠中 (有关更多详细信息,请参阅补充材料)。简而言之,LSK 细胞在 96 孔圆底微孔板中培养,培养基为 StemSpan 无血清扩增培养基(StemCell Technologies),其中添加了 100 ng/mL 重组鼠干细胞因子 (rmSCF)、10 ng/mL rm 白细胞介素-11 (IL-11) 和 5 ng/mL rmFlt3l (R&D Systems),并以低感染复数共转导,慢病毒表达 Tet2 sgRNA (Tet2_e10.1;完整序列见补充表 1) 和表观遗传 sgRNA 文库,以实现 ~50% 的感染效率。24 小时后,将培养的细胞汇集、洗涤
摘要 全基因组功能性遗传筛选已成功发现基因型-表型关系并设计新表型。虽然广泛应用于哺乳动物细胞系和大肠杆菌,但在非常规微生物中的使用受到限制,部分原因是无法准确设计此类物种的高活性 CRISPR 向导。在这里,我们开发了一种针对所选生物体(在本例中为产油酵母解脂耶氏酵母)的 sgRNA 设计实验计算方法。在不存在非同源末端连接(主要的 DNA 修复机制)的情况下进行负选择筛选,用于生成 SpCas9 和 LbCas12a 的单个向导 RNA (sgRNA) 活性谱。这种全基因组数据作为深度学习算法 DeepGuide 的输入,该算法能够准确预测向导活性。 DeepGuide 使用无监督学习来获取基因组的压缩表示,然后通过监督学习来映射具有指导活性的 sgRNA 序列、基因组背景和表观遗传特征。全基因组和选定基因子集的实验验证证实了 DeepGuide 能够准确预测高活性 sgRNA。DeepGuide 提供了一种生物体特异性的 CRISPR 指导活性预测因子,可广泛应用于真菌物种、原核生物和其他非常规生物。
An enzymatic method has been successfully es- tablished enabling the generation of partially base- modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine ( th G) analogs, as well as fully modified RZA featuring th G, 5-bromocytosine, 7- deazaadenine and 5-氯酸。被发现的Extigive RZA的转录效率从使用各种T7 RNA聚合酶变体中受益。此外,可以通过TAQ DNA聚合酶以及其他三个基型型核苷酸将D Th G掺入PCR产物中。值得注意的是,在体外CRISPR- CAS9裂解测定中,获得的RNA产物以及与5-溴细胞的RNA产物一起与天然SGRNA一样有效地发挥作用。n 1-甲基丙啶也被证明是尿苷的忠实非典型的肠道构造,当掺入SGRNA时,可以指导Cas9核酸酶切割。7-二氮嘌呤的CAS9失活表明,在SGRNA和PAM位点,嘌呤的7-氮原子的重要性对于实现了有效的Cas9裂解。与SGRNA-蛋白质和PAM的显着性讨论了这项研究的其他方面 - 蛋白相互作用,这些相互作用并未由Cas9 – Sgrna -DNA复杂晶体结构突出显示。这些发现 -