能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
尽管在早期检测和个性化治疗方面取得了重大进展,但癌症仍然是全球死亡的主要原因之一。目前备受关注的一种可能的抗癌方法是开发能够特异性和高效地递送抗癌药物的纳米载体。由于石墨烯基材料具有高药物负载能力和生物相容性,因此在这方面是很有前途的纳米载体。在这篇综述中,我们概述了石墨烯基材料与正常哺乳动物细胞在分子水平以及细胞和亚细胞水平上的相互作用,包括质膜、细胞骨架和膜结合细胞器,如溶酶体、线粒体、细胞核、内质网和过氧化物酶体。同时,我们汇集了有关石墨烯基材料与癌细胞相互作用的知识,这些知识被认为是这些材料在癌症治疗中的潜在应用,包括转移治疗、靶向药物递送和向非癌症干细胞的分化。我们重点介绍了一些关键参数的影响,例如石墨烯基材料的尺寸和表面化学,它们决定了这些粒子在体内和体外的内化效率和生物相容性。最后,本综述旨在将石墨烯基纳米材料(特别是氧化石墨烯)的关键参数(例如尺寸和表面改性)与它们与癌细胞和非癌细胞的相互作用关联起来,以便设计和改造它们用于生物应用,特别是用于治疗目的。2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
13) Levi Nwokafor 先生,独立石油营销商 - 成员 公用事业收费委员会执行秘书 - 成员 14) Adams Oshiomhole 先生,尼日利亚劳工大会主席 - 成员 15) Anne Okigbo 女士,世界银行代理常驻代表 - 成员 16) Chamberlain Oyibo 先生,GMD - 成员 17) 工程师 MM Ibrahim - 成员 18) Onaolapo Soleye 博士 - 成员 -< 19) 律师 Sola Adepetun - 成员 20) Nuhu Obaje 博士,地质学家 - 成员 21) Yinka Omorogbe 先生,学者 - 成员 22) Donu Kogbara 女士,记者 - 成员 v23) BPE 总干事 - 委员会协调员 24) AA Udofia 先生,BPE - 秘书
摘要 皮肤是人体最大的器官,环境因素与人体皮肤的相互作用会导致一些皮肤疾病,如痤疮、牛皮癣和特应性皮炎。作为人体免疫防线的第一道防线,皮肤在人体健康中发挥着重要作用,它通过阻止受皮肤微生物群影响很大的病原体入侵。尽管人体皮肤是微生物的具有挑战性的生态位,但人体皮肤上却寄生着各种共生微生物,这些微生物塑造了皮肤环境。皮肤微生物群会影响人体健康,其失衡和菌群失调会导致皮肤疾病。本综述重点介绍了我们对皮肤微生物群及其与人体皮肤相互作用的理解进展。此外,还描述了微生物群在皮肤健康和疾病中的潜在作用,并重点介绍了一些关键物种。讨论了微生物相关皮肤病的预防、诊断和治疗策略,如健康饮食、生活方式、益生菌和益生元。讨论了使用合成生物学调节皮肤微生物群的策略,作为优化皮肤-微生物群相互作用的一个有趣途径。总之,本综述提供了有关人类皮肤微生物群恢复、人类皮肤微生物群与疾病之间的相互作用以及设计/重建人类皮肤微生物群的策略的见解。关键词:皮肤、微生物群、共生微生物、合成生物学、组学技术、宿主-皮肤微生物群相互作用、皮肤疾病、痤疮
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
超级电容器和可充电电池都是储能设备,其中一种的性能优势传统上是另一种的弱点。电池受益于卓越的储能容量,而超级电容器具有更高的功率和更长的循环寿命。这些设备在电动汽车和电网储能应用中的快速应用正在推动它们的进一步发展和生产。积累和理解这两种设备技术的现有知识将为这两个有着共同目标的不同领域未来研究和开发的进展奠定基础。因此,在这篇评论中,我们汇总了过去 18 年超级电容器和电池的能量功率性能趋势,以预测未来十年这些技术的发展方向。我们特别讨论了每种技术在储能领域的影响及其对混合研究的影响。趋势预测表明,到 2040 年,性能最佳的非对称和混合超级电容器在能量密度 (ED) 方面可以与目前正在开发的商业电池技术相媲美。在功率密度 (PD) 方面,电池技术可以实现与某些基于双电层 (EDL) 的超级电容器相当的性能。对于某些应用,我们预见到这两种设备将继续混合以填补能量功率缺口,从而使增强 ED 对 PD 的惩罚变得微不足道。这种预期的改进最终可能会达到饱和点,这表明一旦达到一定水平的 ED,任何进一步的指标增强只会导致与 PD 的严重权衡,反之亦然。在这些技术中观察到的饱和也促使人们探索新的途径,特别强调可持续性,以使用可再生材料和方法实现高性能。
CCC hhhiiieeefff EEE dddiiittooorrr DD rr 。 。 YY ooggeeshh WW 。 。 TT hheerree EEE dddiiittooorrr D DD r rr 。 .. AA s ss h hh o oo k kk Y YY 。 .. DDD aa w ww a aan nn dd dd e ee D DD r rr 。 .. A AA lllo oo kkk R RR a aa i ii EEE xxxeeeecccuuutttiiivv v eee EEE dddiiitttooorrriiiaaa lll BBB oooaaarrrdddd D DD r rr .. .. AA 。 .. 嗯。 .. D DD e ee s ss h hh m mm u uu k kk h hh D DD r rr . .. S SS . .. D DD . .. P PP a aa t tt a aa n nn k kk a aa r rr D DD r rr . .. V VV . .. N NN . .. C CC h hh a aa r rr d dd e ee D DD r rr . .. P PP . .. WWW a aa k kk t tt e ee D DD r rr . .. S SS . .. K KK u uu l ll k kk a aa r rr n nn i ii D DD r rr . .. S SS . .. D DD . .. P PP a aa t tt i ii l ll
在本研究中,我们展示了如何使用量子计算来评估分子的电子密度。我们还认为电子密度可以成为未来量子计算的有力验证工具,而传统量子化学可能无法解决这一问题。电子密度研究是化学、物理学和材料科学等多个领域的核心。霍恩伯格-科恩定理规定,电子密度唯一地定义了电子系统的基态特性。1通过赫尔曼-费曼定理,2电子密度提供了分子内作用力的信息。3,4作为物理科学中信息最丰富的可观测量之一,5-10密度为密度泛函理论 (DFT) 奠定了基础,DFT 是一种预测多电子系统特性的形式化方法。11由于实验是真理的仲裁者,所以责任通常落在电子密度上。重要的是,电子密度可以通过细化X射线衍射和散射数据来重建,9例如使用多极模型、5-8、10X射线约束波函数12或最大熵方法。13我们工作的一个动机是