双壳贝类包括牡蛎和贻贝,是重要的海鲜产品,因为它们占海洋和沿海产量的 56% 以上,占海鲜贸易的 12%,价值超过 340 亿美元。双壳贝类因其高营养价值而越来越受到消费者的欢迎,被认为是可持续的海鲜产品,因为它们不需要饲料投入,可以为食品安全做出重大贡献。作为滤食性动物,双壳贝类可以积累微生物,而不当的收获后处理和储存程序可能会促进腐败和致病微生物的生长,导致腐败和潜在的安全问题。同时,消费者对新鲜和加工程度最低的食品的需求日益增加。因此,了解双壳贝类的微生物多样性和控制微生物生长的方法越来越受到研究者的关注。本综述重点介绍了对双壳贝类微生物群落的了解以及使用创新技术保存和延长海鲜保质期的最新进展。
摘要 飞机水平稳定器容易因气流与机翼分离以及随后尾流对稳定器结构的冲击而发生疲劳损坏,这被称为抖振事件。在本研究中,先前开发的等几何混合壳方法在动态分析环境中重新表述,以使用不同的俯仰角模拟飞机起飞。提出的 Kirchhoff-Love (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高保真度的 3D 应力,而使用计算效率高的 KL 薄壳对不太重要的部件进行建模。施加的气动载荷是由混合浸入几何和边界拟合的计算流体动力学 (CFD) 分析生成的,以准确记录稳定器外表面上的动态激励。具体来说,为了节省计算量,除了机翼和稳定器之外的整个飞机都浸入基于浸入几何分析 (IMGA) 概念的非边界拟合流体域中,而围绕飞机机翼和稳定器的网格是边界拟合的,以准确计算稳定器上的气动载荷。然后将获得的载荷时间变化应用于水平稳定器的动态混合壳分析,并评估高保真应力响应以进行后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的抖振引起的疲劳损伤。代表性水平稳定器的稳态和动态非线性混合壳分析结果证明了所提方法的数值精度和计算效率。
摘要 飞机水平稳定器容易因气流与机翼分离以及随后其尾流对稳定器结构的冲击而发生疲劳损坏,这被称为抖振事件。在本文中,之前开发的等几何混合壳方法在动态分析设置中被重新制定,以模拟使用不同俯仰角的飞机起飞。所提出的 Kirchhoff-Love (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高精度 3D 应力,而使用计算效率高的 KL 薄壳对不太重要的部件进行建模。施加的气动载荷由混合浸入几何和边界拟合的计算流体动力学 (CFD) 分析生成,以准确记录稳定器外表面的动态激励。具体来说,为了节省计算量,除了机翼和稳定器之外的整个飞机都浸入基于浸入几何分析 (IMGA) 概念的非边界拟合流体域中,而围绕飞机机翼和稳定器的网格则采用边界拟合,以准确计算稳定器上的气动载荷。然后将获得的载荷时间变化应用于水平稳定器的动态混合壳分析,并评估高保真应力响应以进行后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的抖振引起的疲劳损伤。代表性水平稳定器的稳态和动态非线性混合壳分析结果证明了所提方法的数值精度和计算效率。
• 确定一种你想加强与他人关系的方法并制定计划。例如,问问你的表兄弟姐妹是否有兴趣安排每周的聚会,或者问问朋友是否愿意和你一起锻炼。 • 与老朋友重新联系,与各个年龄段的人互动,培养兴趣爱好,担任志愿者或导师。 • 使用科技和社交媒体也是扩大和维护社交网络的好方法。 • 想想你可以改变什么来减轻生活中的压力。这可能包括改变对有压力的事情的看法。 • 考虑一下你对衰老的看法。衰老是生活的正常组成部分,它有很多积极的方面。 • 了解瑜伽或冥想等正念练习并尝试一下。 • 如果你感到焦虑或抑郁超过两周,如果它影响到你的日常生活,或者如果你有自残的想法,请咨询健康专家。 • 考虑接受治疗和药物治疗抑郁和焦虑。
在人工智能(AI)和物联网(IoT)时代,包括图像,声音,气味和伤害在内的大量感官数据是从外部环境中感知的,对以数据为中心任务的处理速度和能源效率施加了关键要求。1 - 3,尽管已经做出了巨大的努力来提高von Neumann计算机的计算能力和效率,但物理分离的处理和内存单元之间的恒定数据不可避免地会消耗巨大的能量并诱导计算潜伏期。4 - 9另外,基于人工神经网络(ANN)的人脑启发的神经形态计算已经证明了其在AI和机器学习等数据密集应用中的巨大优势。必须开发ANN的硬件实施,即人工突触和神经元,以模仿生物突触和神经元的生理活性。近年来,已经提出了各种神经形态设备,10 - 13,由于其简单的结构,高积分密度,高运行速度,低能量消耗和模拟行为,两个末端的内置构件被认为是最有希望的候选者。1,2,7,8,14 - 17尤其是,最近具有挥发性阈值转换(TS)行为的新型扩散的回忆录已证明它们在泄漏的整合和火灾(LIF)神经元中的潜力,5,7,18,19,19
摘要:胶体量子点(QDS)是具有光子量子信息技术中应用的单光子源的有前途的候选。但是,使用胶体材料开发实用的光子量子设备需要可扩展的确定性放置稳定的单个QD发射器。在这项工作中,我们描述了一种利用QD大小的方法,以促进单个QD的确定性定位到大型阵列中,同时保持其光稳定性和单光子发射属性。CDSE/CDS CORE/SHELL QD被封装在二氧化硅中,以增加其物理大小而不会扰动其量子限制的发射并增强其光稳定性。然后使用模板辅助的自组装将这些巨型QD精确定位在有序的阵列中,单个QD的产率为75%。我们表明,组装之前和之后的QD在室温下表现出抗束式行为,其光学特性在长时间后保留。一起,这种自下而上的合成方法通过二氧化硅壳和可靠的模板辅助自组装提供了一种独特的方法,可以使用胶体QD作为单光子发射器来生成可扩展的量子光子光子平台。
了解原子基本参数 (FP),例如荧光产额、光电离截面和科斯特-克罗尼希跃迁概率,对涉及 X 射线荧光 (XRF) 的任何定量分析都至关重要。不同元素的大部分现有实验和理论 FP 值都是四十多年前获得的。对于某些化学元素和某些 FP,由于不存在实验或理论数据,所以列表数据完全基于插值。不幸的是,大多数列表 FP 数据的不确定性通常不可用或仅是估计的。由于这种情况肯定是可以改善的,国际 X 射线基本参数倡议 [ 1 ] 和其他组织正在努力通过采用最新技术的新实验和计算来重新审视和更新 FP 数据库。在这项工作中,钽 L 壳层基本参数,即荧光产额和科斯特-克罗尼希因子,正在通过实验重新确定。钽是微电子[ 2 , 3 ]、太阳能工业[ 4 ]、医药等领域的关键元素。另一方面,通过实验确定的 Ta-L 壳层荧光蛋白相当稀缺。大多数可用的实验数据都超过 30 年,而最常见表格[ 5 , 6 ] 的不确定性估计值仅为估计值。在这项工作中,我们应用 PTB[ 7 ] 的无参考 XRF 设备以及专用的透射和荧光测量[8] 来重新审视钽的这些参数。
摘要 近年来,太空计划复苏,主要得益于私营企业日益增长的兴趣,但同时也出现了多个层面对人类太空活动的强烈抵制。这在一定程度上是更广泛的反启蒙时代精神的体现,在西方其他公共生活领域中也可以发现,部分是对私营部门广泛参与的反应。虽然太空怀疑论仍未主导太空问题的讨论,但它却是一个令人惊讶的广泛而分散的现象,汇集了从亲启蒙自由主义者到狂热的“深层生态”活动家、哲学悲观主义者到各种反全球化主义者等各种思想流派。然而,到目前为止,几乎没有人积极反对这种文化趋势。虽然太空工程师和企业家“照常”开展业务,但这种文化氛围中隐藏着大量风险,尤其是如果人们采用多次重复(但很少得到充分理解)的格言“政治是文化的下游”。本文将回顾这一“大帐篷”文化运动中的主流思想,向太空怀疑论者提供合理的反驳意见,并概述为平衡天平需要开展的重要文化和公众宣传工作。
图 1. 该图展示了我们对基于类比的解释对统计概念(例如全局准确性)和人工智能系统整体行为的工作机制的理解。橙色代表用户日常观察中的元素,以及他们基于对世界的体验而不断发展的世界心理模型。蓝色代表与人工智能系统交互和体验的元素。一般来说,人们会建立一个强大的世界心理模型来解释日常情况下的观察结果。随着对更多世界观察的解释,这种心理模型会得到更新。借助类比推理,人们可以根据现有的世界心理模型建立一个新的人工智能系统心理模型。他们可以解释人工智能系统,然后更新这两个心理模型。