X 射线屏蔽在医学成像、核能和工业射线照相等各个领域都至关重要。传统上,铅因其出色的屏蔽性能而成为首选材料。然而,铅具有剧毒,对环境和健康构成重大风险。本综述探讨了铅在 X 射线屏蔽中的环保替代品的开发和应用。讨论了钨、铋、硫酸钡、聚合物、纳米复合材料和粘土基材料等各种材料。本综述重点介绍了这些材料的最新进展、优势和局限性,以及它们对环境的影响和成本效益。考虑到对更安全和环保选择的需求日益增加,强调了辐射防护中对可持续材料的需求。这篇全面的综述提供了对环保型 X 射线屏蔽材料未来研究和开发方向的见解,旨在指导研究人员和行业专业人士选择和应用可持续替代品。
F. Ballarini等人,“ Fluka:地位和观点”,“第15届有关屏蔽加速器,目标和辐射设施的屏蔽方面的讲习班”(Satif-15),美国密歇根州东兰辛,美国密歇根州,美国密歇根州,9月2022日,2022年,2022年,2022年,
辐射屏蔽的目的是将辐射治疗设备产生的有效辐射剂量降低到房间外的足够低水平。所需的有效剂量水平由地方或国家监管机构确定。所需的剂量水平通常在公共占用率(不受控制的访问)与职业占用(受控访问)方面有所不同。到达受保护位置的剂量率直接受到工作量(W)的影响,这是机器产生的辐射的度量。对于线性加速器,同中心的工作负载是在同中心处吸收的剂量率,在最大程度的吸收剂量的深度确定水中,每小时以灰色(例如,每小时,每周或一年或一年)为灰色(gy)(NCRP 2005b)。然后将同中心的工作负载归一化为距X射线目标1米(如果从X射线目标到同中心的距离不是1米),以产生屏蔽计算中使用的工作负载(W)。除了工作负载外,所需的屏蔽也是机器能量(MVS)的函数;从X射线目标(或同中心)到屏蔽点的距离;梁沿特定方向定向的时间的比例;以及所考虑的空间被认为是占用的时间的一部分。
精确的电磁干扰 (EMI) 防护对于电子设备在自然灾害、战争和野外医疗干预等场景中的正常运作至关重要。EMI 和 RF 屏蔽材料针对每种应用量身定制,根据面积大小、空间形状和要屏蔽的频率而有所不同。军用测试规范(MIL-STD-461A 至 F)引入了额外的复杂性,例如极端温度。新电子设备和微波技术的不断涌现要求扩展高级屏蔽应用的选择。面对动态的 EMI/RF 环境,3D 打印,尤其是熔融沉积成型 (FDM ® ) 材料,可提供快速的解决方案生产。
在一个时代,信息占据了至高无上的“屏蔽数据王国:掌握计算机安全的艺术”是浏览复杂数字保护景观的重要指南。这本综合书籍研究了保护敏感数据免受网络威胁所必需的基本原理和高级技术。将理论见解和实际应用结合在一起,涵盖了各种各样的主题,包括加密,网络安全,威胁检测和事件响应。无论您是IT专业人员,网络安全爱好者,还是只是希望增强知识的人,这本书都是您掌握计算机安全艺术的确定资源。
摘要 - 已经研究了使用光电仪和次级电子排放对相邻太空飞行器的无触觉感测,用于地球同步(GEO)应用。随着越来越多的任务发送到Cislunar空间,该技术也可以扩展到那里。但是,Cislunar环境的复杂性给无触摸潜在的传感技术带来了新的挑战。一个主要问题的时间比地理区域短,而在Cislunar地区可能低至10 m。因此,研究了一个在月球周围短德比区域中带电的航天器周围的电力和电势场的模型。呈现了真空(拉普拉斯)和debye -hückel模型,并使用有效的debye长度来扩展模型并更好地代表环境。先前已经在低地球轨道(LEO),安静的地理和小行星环境中研究了有效的Debye长度,但在Cislunar等离子体环境中尚未发现,并且在远距离距离的距离上可以使用电子排放率更高,比预期的距离更大。一旦建立了有效的DEBYE长度和相关模型,通过在NASCAP-2K中的计算(一种飞船 - 系数相互作用软件)中探索了有效的Debye长度和无触摸潜在传感功能之间的关系。然后使用所开发的方法来确定在具有不可忽略的静电势屏蔽的Cislunar地区被动和主动无触摸电势感应是可行的。
氢含量高的材料可以最有效地屏蔽快中子。它们通过与氢原子碰撞而减速到热能。热中子可以通过高热中子截面材料(如硼)的存在而几乎消除。初级伽马射线最好用铅或其他高密度材料屏蔽。次级伽马射线是由氢捕获热中子而产生的。这些捕获伽马射线可以通过添加硼来最小化。
本文档中提供的信息是技术分析的结果,可能会根据系统设计而发生变化。我们保留进行技术变更和改进的权利。这些信息不具有约束力,并不代表保证的特性。我们不接受基于此信息的任何赔偿要求。我们对印刷错误不承担任何责任。