Anne de Bortoli 1,2*,AdélaïdeFeraille3 1 LVMT,Ecole des Ponts Paristech,University Gustave Eiffel 2 Ciraig,Ciraig,化学工程系,Polytechnique Montreal 3实验室。Navier实验室,Ponts Paristech学校,Gustave Eiffel *通讯作者;电子邮件:anne.de-bortoli@enpc.fr
• 评估师分区图(少于 30 天)——标的物业用红色勾勒,相邻物业用红色虚线勾勒 • 分区分区图——标的物业用红色勾勒,每处物业上标明拟议分区 • 产权报告(少于 30 天)——必须由在华盛顿州获得许可的产权公司准备 • 法律描述——在初步地图上说明,并且必须与产权报告中的描述相符 • 环境检查表(如适用) • 水/下水道可用性证书 • 所需的公共通知——市政府工作人员将为申请人提供准备说明 • 初步 BSP 地图——请参阅城市发展法规 §10 – 4D – 13 了解要求 • 初步短地籍图——请参阅城市发展法规 §10 – 4D – 4 了解要求 • 初步地籍图——请参阅城市发展法规 §10 – 4D – 4 了解要求 • 规划单元开发提交文件——请参阅城市发展法规 §10 – 4E – 7满足要求
最近已显示:损害累积和SC-FTO型设备的故障仅用于短路脉冲比给定临界值更长的短路脉冲,此后,栅极裂口电流明显增加; 由于热机械应力和随后的温度相关的顶部金属化挤出,降解和失效是在顶部SIO 2中产生裂纹的结果[1]; 遵守临时偏置条件,由于金属路径在设备顶部区域融合效果,因此可以恢复功能[2]。在此,提出和讨论了一个新的结果,即直接在门和排水之间流动的泄漏电流的检测,也影响晶体管的短路性能和稳健性,为此表明,短路期间门源偏置的值也起着重要作用。
1843 年,阿达·洛夫莱斯 (Ada Lovelace) 发表了历史上第一个计算机程序。该程序旨在在查尔斯·巴贝奇 (Charles Babbage) 的分析机上执行。然而,这台机器当时还没有制造出来。阿达·洛夫莱斯在测试她的程序之前就去世了。当阿达·洛夫莱斯和查尔斯·巴贝奇设计这种计算机时,量子计算现在比分析计算略先进一些。量子计算的概念是在几十年前设计的,基于这些原理的量子算法也是在此期间开发的。然而,我们还没有通用的量子计算机来使用这些算法。今天的量子计算机是计算时间和内存有限的设备,但它们正在逐年增长。继谷歌宣布量子霸权* 1 [Arute et al. 2019] 之后,本报告旨在概述量子计算的进展,并简要介绍理解如何使用这种机器进行计算所需的概念。本报告还介绍了最新技术,以帮助理解什么是量子计算。首先,我们介绍量子计算的历史,然后介绍量子物理的核心概念和量子计算的基本概念。最后,我们将概述量子算法和技术。
摘要尼我们是一种广泛使用的脂肪生物,由于其有效的抗菌活性及其食品级状态。其作用方式包括细胞壁合成抑制和孔形成,分别归因于脂质II结合和形成孔形成域。我们发现了Cesin,这是尼生蛋白的短自然变体,是由精神嗜血杆菌卵巢卵巢卵石产生的。与其他天然尼宁变体不同,Cesin缺少构成孔形成域的两个末端大环。目前的研究旨在异源表达和表征Cesin的抗小胞活性和物理化学特性。在乳酸乳酸球菌在乳酸菌中成功的Heterolo gous表达之后,甘西生酰生物表现出与Nisin相当的广泛而有效的抗菌谱。使用脂质II和Lipoteichoic Acid结合测定法确定其作用方式,将有效的抗菌活性与脂质II结合和与Teichoic Acids的静电相互作用联系起来。荧光显微镜表明Cesin缺乏自然形式的孔形成能力。稳定性测试表明,在不同的pH值和温度条件下,盐脂型在高度稳定,但可以通过胰蛋白酶降解。然而,一种生物工程的类似物Cesin R15G克服了胰蛋白酶降解,同时保持了全抗菌活性。这项研究表明,Cesin是一种新颖的(小)尼生变体,通过抑制细胞壁合成而没有孔隙形成,可以有效地杀死靶细菌。
摘要由于其高生产成本高的特异性刚度和强度,短纤维增强塑料(SFRP)取代了越来越常见的材料,例如技术设备中的钢或铝。即使SFRP在宏观水平上均匀地作为材料起作用,由于纤维形态(方向,长度和体积含量),在微观水平上形成各向异性。结果,由SFRP制成的组件在焊接线处具有较低的强度和刚度,或者厚度的差异可能导致组件故障。因此,SFRP中纤维形态的知识对于组件设计至关重要。确定纤维形态的一种方法是计算机断层扫描(CT)。由于几微米(〜7-20 µm)的纤维直径较小,因此由于必要的高放大倍率,层析成像的视野降低了。因此,标准CT系统只能用于检查具有较大体积的组件的成分和纤维形态的代表性,破坏性的样品,不能非破坏性地分析。在这项工作中,研究了一种方法,其中将少量衰减的示踪剂纤维添加到塑料中的增强纤维中,从而增加了对比度与噪声比率。这允许减少几何放大倍率,并可以实现更大的视野。
本研究使用功能性磁共振成像 (fMRI) 数据研究了脑图谱选择对自闭症谱系障碍 (ASD) 模型分类准确性的影响。脑图谱(例如 AAL、CC200、哈佛-牛津和 Yeo 7/17)用于定义 fMRI 分析的感兴趣区域 (ROI),在帮助研究人员研究 ASD 患者的连接模式和神经动态方面发挥着至关重要的作用。通过系统回顾,我们检查了不同图谱在各种机器学习和深度学习框架中对 ASD 分类的表现。结果表明,图谱选择显著影响分类准确性,较密集的图谱(例如 CC400)提供更高的粒度,而较粗的图谱(例如 AAL)提供计算效率。此外,我们讨论了结合多个图谱以增强特征提取的动态,并探索了在不同数据集中选择图谱的含义。我们的研究结果强调了标准化图谱选择方法的必要性,并强调了未来的研究方向,包括整合新的图谱、先进的数据增强技术和端到端深度学习模型。这项研究为优化基于 fMRI 的 ASD 诊断提供了宝贵的见解,并强调了解释图谱特定特征对于更好地理解 ASD 中的大脑连接的重要性。
b IRT Saint-Exupéry,图卢兹,法国 摘要 本文提出了 SiC MOSFET 栅极在重复短路应力下的老化规律。基于分析研究、物理形式和预处理数据,提出了基于应力变量 T j、T 脉冲栅极损伤 % 和 E sc 的数值拟合。对老化规律的准确性和预测能力进行了评估和比较。结果提出了一种基于 T Al_Top 金属源的新老化规律。该规律的拟合精度最高。最后,直接基于短路能量 E sc 的老化规律似乎具有最佳的预测能力。 1. 简介 SiC MOSFET 提高了功率转换器效率 [1]。如今,必须保证意外极端操作中的可靠性和稳健性。然而,由于平面结构中的电流密度更高和通道更短,SiC MOSFET 的短路 (SC) 耐受时间 (T SCWT @2/3 x V DSmax ) 低于硅器件,t SCWT = 2μs,而 Si IGBT 的 t SCWT = 10μs。最近,人们投入了大量精力来研究短路测试下的专用 SiC MOSFET 故障机制 [2,3]。高温变化导致栅极区域和 Al 源金属周围产生累积热机械应力。这些通常导致 SiC MOSFET 无法超过源自硅标准的 1000 次重复短路循环阈值。在 SiC MOSFET 栅极损坏之前,对其允许的短路循环次数的预测目前尚不为人所知,但这却是运行阶段主要关注的问题。在 [4] 中,提出了威布尔分布和直接 T j Coffin-Manson 老化定律,但漏源电压偏置降低至 200V,并使用栅极沟槽器件。在 [5] 中,作者通过实验证实了栅极老化与 T j 应力的依赖关系,但未拟合 Coffin-Manson 参数,因此未提出预测能力。在本文中,进行了重复的 SC 研究,以建模并提出一组 SiC MOSFET 上的预测分析栅极老化定律
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月27日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.27.635018 doi:Biorxiv Preprint
高能光子审讯已成为检测特殊核材料和表征核废料的宝贵工具。先前的研究主要使用大约9-MV线性电子加速器(Linac)作为光子源和有限的探索,并且在使用有机闪光器的使用时,在光子和中子辐射中确定沉积的能量,并分离光子和中子辐射,当光子疑问是基于中子构度的测量值时,至关重要的。挑战是由电子加速器通常产生的强烈光子通量引起的,导致脉搏堆积,检测器饱和度和次优信号背景比等问题。这项研究旨在通过引入一种新方法来扩展常规活动光子询问(API)技术的适用性,从而使检测能够除核材料外,对光元素(特定的氮,氧气和碳)(特定于氮气,氧气和碳),以常规的炸药,Narcotics和化学武器的形式存在。该方法依赖于高于12 MeV的高能量的活动光子询问,并加上光欧图隆光谱法。使用有机液体闪烁体的22兆瓦电子LINAC,脉冲形状歧视表现出有希望的性能。我们的结果表明,有机闪光灯的常规脉冲形状歧视能力和快速的时间尺度操作可以使(γ,XN)反应的快速中子检测,即使在具有强烈光子闪光的光子和中子辐射的混合短脉冲中,也能够检测到中子。关键字:国土安全性,中子,闪烁体,脉冲歧视,LINAC,BC501A对高能量光子诱导的光onutron检测的初始实验方面的探索为检测非法材料的新方法建立了基础。