跨被子植物的花卉特征的巨大变化通常被解释为适应授粉媒介的结果。但是,在野生人群中的研究通常没有发现授粉媒介介导的花的迹象。进化理论预测,这可能是稳定条件下停滞期的结果,其次是授粉媒介变化时期较短,为创新表型提供了选择。我们询问停滞周期是否是由于选择稳定,其他形式的选择或低性状能力,即使存在选择,也引起了停滞。我们研究了一种植物,主要是由其范围内的一种蜜蜂授粉的植物。,我们使用了大型野生人群中的全基因组相关性测量性状的遗传力和发展性,并将其与对同一个体的选择估计相结合。我们发现了稳定选择和低性状遗传力的证据,作为流动中停滞的潜在解释。标准花瓣的面积正在稳定下,但可变性不是可遗传的。单独的特征,花的重量具有很高的含义,但目前尚未选择。我们展示了一个简单的授粉环境如何与当前的自适应进化变化前提条件相吻合,而遗传性的变化仍在响应未来的选择压力。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 3 月 29 日发布。;https://doi.org/10.1101/2023.03.28.534654 doi:bioRxiv preprint
提供者是指本节中的药房。零售:最多 31 天的供应量。邮购:最多 90 天的供应量或首选 90 天零售网络药房。专科药物不通过邮购承保。您可能需要从我们指定的药房购买某些药物,包括某些专科药物。某些药物可能需要预授权或导致更高的费用。如果您使用网络外的药房(包括邮购药房),您可能需要承担超过允许金额的任何金额。某些预防药物(包括某些避孕药)可免费承保。请参阅所列网站,了解您的计划承保的药物信息。并非所有药物都承保。您可能需要先使用成本较低的药物,然后才能享受保单规定的某些处方药福利。
结果:机械研究表明,ABBV-MALT1有效抑制了BCR途径的信号转导,并降低了非GCB DLBCL细胞系中NF-K B基因的活化,从而导致细胞周期停滞并减少生存能力。体内,该化合物的口服给药表明在几种B细胞肿瘤模型中,包括对Bruton的酪氨酸激酶(BTK)抑制剂的非GCB DLBCL模型。nf-k b靶基因包括促生物的家族成员bcl-x l和bcl2-a1,有助于调节内在凋亡途径。作为ABBV-MALT1诱导的NF-K B途径的抑制导致这些基因的下调,我们假设相关的肿瘤模型将越来越依赖于生存的家族成员Bcl-2。为了检验该假设,在DLBCL的细胞系和患者衍生的异种移植模型中均进行了ABBV-MALT1和选择性BCL-2抑制剂Venetoclax的组合研究。在此表明,在体内测试的所有模型中,ABBV-MALT1和VENETOCLAX的施用会导致剧烈的抗肿瘤活性。这种疗效也转化为原发性患者CLL细胞的体外,与单独的任何一种药物相比,该组合赋予了更大的凋亡水平。
摘要 SARS-CoV-2 非结构蛋白 1 (Nsp1) 包含一个 N 端结构域和由短连接区连接的 C 端螺旋。SARS-CoV-2 的 Nsp1 (Nsp1-C-ter) 的 C 端螺旋与 40S 核糖体亚基的 mRNA 进入通道结合并阻止 mRNA 进入,从而关闭宿主蛋白质合成。Nsp1 抑制宿主免疫功能,对病毒复制至关重要。因此,Nsp1 似乎是治疗的一个有吸引力的靶点。在本研究中,我们对美国食品药品监督管理局 (FDA) 批准的针对 Nsp1-C-ter 的药物进行了计算机筛选。在获得的最佳匹配中,孟鲁司特钠水合物与 Nsp1 结合的体外结合亲和力 (KD ) 为 10.8 ± 0.2 µM。在模拟运行中,它与 Nsp1-C-ter 形成稳定的复合物,结合能为 –95.8 ± 13.3 kJ/mol。孟鲁司特钠水合物还挽救了 Nsp1 在宿主蛋白质合成中的抑制作用,这通过萤火虫荧光素酶报告基因在细胞中的表达得到证明。重要的是,它显示出对 SARS-CoV-2 的抗病毒活性,并在表达 ACE2 的 HEK 细胞和 Vero-E6 细胞中降低了病毒复制。因此,我们建议以孟鲁司特钠水合物为先导分子,设计有效的抑制剂来帮助对抗 SARS-CoV-2 感染。
使用此QR码,白色就像条形码。即使它与CDC卡不同,所有CDCC疫苗卡也可用。如果有人想检查对手,您只能在手机或其他金属上扫描QR鳕鱼。这就是为什么他或她给了他们您的朋友。但是,您所有的信息都无法在系统中显示给他们。
我们的研究表明,变形器还会对医学和网络安全造成虚假信息威胁。为了说明这一问题的严重性,我们在讨论网络安全漏洞和攻击信息的在线公开资源上对 GPT-2 变形器模型进行了微调。网络安全漏洞是计算机系统的弱点,而网络安全攻击则是利用漏洞的行为。例如,如果漏洞是 Facebook 的弱密码,那么利用该漏洞的攻击就是黑客破解您的密码并侵入您的帐户。
摘要 木质素是位于细胞壁的芳香族聚合物,可为木质组织提供强度和疏水性。木质素单体通过苯丙烷途径合成,其中咖啡酰莽草酸酯酶 (CSE) 将咖啡酰莽草酸转化为咖啡酸。在这里,我们探讨了两种 CSE 同源物在杨树 (Populus tremula 9 P. alba) 中的作用。报告系显示 CSE1 和 CSE2 启动子赋予的表达相似。CRISPR-Cas9 产生的 cse1 和 cse2 单突变体具有野生型木质素水平。尽管如此,CSE1 和 CSE2 并非完全冗余,因为两个单突变体都积累了咖啡酰莽草酸。相比之下,cse1 cse2 双突变体的木质素减少了 35%,并导致相关的生长损失。降低木质素含量意味着在糖化程度有限的情况下,纤维素转化为葡萄糖的转化率增加了四倍。双突变体的酚类分析显示,代谢变化很大,除了咖啡酰莽草酸外,还包括对香豆酰、5-羟基阿魏酰、阿魏酰和芥子酰莽草酸的积累。这表明 CSE 具有广泛的底物特异性,这已通过体外酶动力学得到证实。总之,我们的结果表明,在羟基肉桂酰-莽草酸水平上,苯丙烷类途径中存在一条替代途径,并表明 CSE 是改善生物精炼植物的有希望的目标。
合成数据与人工智能医疗设备的创新、评估和监管 Puja Myles,公共卫生硕士、博士;Johan Ordish,文学硕士;Richard Branson,理学硕士、文学硕士 摘要 合成数据是模仿真实数据的属性和关系的人工数据。它有望促进数据访问、验证和基准测试,解决缺失数据和欠采样、样本增强以及在临床试验中创建对照组的问题。英国药品和保健产品管理局 (MHRA) 正在利用其目前对高保真合成数据开发的研究,制定其对经过合成数据训练的人工智能医疗设备的监管立场,并将合成数据作为人工智能医疗设备验证和基准测试的工具。 关键词 人工智能作为医疗设备 (AIaMD)、数据隐私、健康数据、合成数据、验证、监管 简介 人工智能 (AI) 在医疗和社会保健领域的应用预计将会兴起,这意味着人工智能作为医疗设备 (AIaMD) 将成为医疗设备中越来越突出的子类别。 1 因此,医疗器械法规是否适合人工智能变得越来越重要,制造商是否了解并遵守其义务也变得越来越重要,其中最主要的是证明其 AIaMD 具有良好的效益风险比。2 强大的数据集是展示 AIaMD 性能的核心,通常是此类设备开发的主要障碍。3 医疗器械监管机构有责任确保制造商拥有履行这些义务所需的工具,并提供更广泛的支持以鼓励此类创新设备的开发。合成数据集的开发很可能成为这样一种辅助工具。本文概述了 MHRA 在研究和开发合成数据方面的努力,并考虑在更广泛的改革背景下使用合成数据,以确保医疗器械法规适用于人工智能。合成数据概况 近年来,人们对合成数据的兴趣日益浓厚,原因有很多,包括在数据治理法规更加严格的世界中可能易于获取、保护患者隐私、在机器学习算法背景下的基准测试和验证能力,以及解决真实数据局限性的能力,如数据缺失、欠采样和样本量小。4 更重要的是,尽管合成数据的潜在应用已经讨论了多年,但直到最近,合成数据生成方法的进步才能够产生高质量的合成数据。5 定义合成数据 从概念上讲,合成数据是模仿真实数据的属性和关系的人工数据。合成数据的质量取决于生成合成数据的方法。合成数据的质量通常用其“效用”或“保真度”来描述。“能够捕捉各种数据字段之间复杂的相互关系以及真实数据的统计特性的合成数据集可称为“高实用性”或“高保真度”合成数据集。在患者医疗保健数据方面,高保真度合成数据集将能够捕捉复杂的临床关系,并且在临床上与真实患者数据难以区分。高效用合成数据的生成往往需要大量资源,并且根据需要合成数据的应用,使用低效用或中等效用合成数据可能是可以接受的。
VCEA 将通过要求该州投资者所有的公用事业公司减少排放来实现该州电力部门的脱碳,包括要求 Dominion 到 2045 年实现 100% 无碳电力,要求 Appalachian Power 到 2050 年实现 100% 无碳电力,加入区域温室气体倡议 (RGGI),并在 2050 年后限制几乎所有发电厂的所有二氧化碳排放。它还要求到 2024 年关闭几乎所有燃煤发电厂,到 2045 年关闭大多数天然气、生物质和石油发电厂。最后,VCEA 包括到 2034 年实现 5,200 兆瓦 (MW) 的海上风电、到 2035 年实现 3,100 MW 的能源存储容量,以及显著提高能源效率。根据美国能源信息署的数据,弗吉尼亚州目前已安装 2,300 MW 的可再生能源容量。