全国范围内,自 2009 年以来,肇事逃逸事故每年以约 7% 的速度增加。肇事逃逸包括任何驾驶车辆的人撞到人、物体或其他车辆然后离开现场(有意或无意)的碰撞。肇事逃逸可能有几个因素,例如夜间能见度低、酒驾和害怕与警察互动。
4. 填写完申请表后,整理好 PDF 文件。请将申请表和场地平面图页的副本与图纸文件分开提交。只能上传 PDF 文件。如果这不是新建或增建项目,则不需要场地平面图。对于图纸文件,清除所有“autocadshx 文本”,并将所有图纸合并为单个 PDF 文件(而不是 zip 文件)。删除所有安全限制。拼合文件。所有图纸都必须加书签。确保各个页面包含图纸编号和每张图纸的描述性名称,这些名称应与封面上的索引页相匹配。按图纸索引的顺序排列书签,并包括图纸集中提供的所有学科。a. 通常,为了完整,文件必须描述以下内容:建筑项目所需的总体工作,包括建筑、景观、土木、结构、机械和电气系统。提供设计中使用的建筑规范的完整列表。提供占用类型、建筑类型、总建筑面积以及按占用类型划分的建筑面积。确定项目是否有喷水灭火系统。在适用的情况下,需要注明是否符合生命安全以及建筑、消防和残疾人无障碍规范。所有图纸都必须标有“用于施工”或“施工文件”。如果没有所有这些信息,电子版计划将不会被接受。5. 当文件准备好上传时,使用此链接访问 eplan 上传登录屏幕 - https://epermits . nashville.gov/thinclient/ 6. 登录完成后,将文件放入名为“File Dropbox”的文件夹中。分别上传您的申请和图纸集。请在文件标题中为您的申请和图纸文件命名,并注明许可申请编号和项目名称。所有上传的文件名必须是唯一的,并包含申请编号。 7. 如果需要重新提交或修改,您需要将受影响的页面合并为一个 pdf 文件,并按照原始文件提交流程添加书签。使用许可证编号和修订号为 pdf 文件命名,然后上传到 dropbox。修订框中的所有修订都必须用云图显示和编号,并注明日期。 8. 随时查看审核状态 - https://epermits.nashville.gov/#/ 注册用户负责跟踪审核。使用链接将允许访问部门审核状态、未结项目以及审核人员的评论。任何问题都需要直接向许可证申请中指定的具体部门提出。 9. 当所有部门都完成审核后,您需要联系许可证发放部门安排付款。清单上的最后一项是“客户领取的计划”——付款后会勾选此项。联系信息 - Permit.issuance@nashville.gov 或 615-862-6517。
1 摘要 基于人工智能(又称 AI)的控制器在信息物理系统(CPS)中被广泛应用以完成复杂的控制任务,因而在过去几年中受到了广泛关注。然而,保证配备此类(未经认证的)控制器的 CPS 的安全性和可靠性目前非常具有挑战性,这在实际许多安全关键应用中至关重要。为了解决这一困难,我们提出了一种 Safe-visor 架构,用于在随机 CPS 中对基于 AI 的控制器进行沙盒处理。所提出的框架包含(i)一个基于历史的监控器,它检查来自基于 AI 的控制器的输入并在系统的功能性和安全性之间做出妥协,以及(ii)一个安全顾问,当基于 AI 的控制器危及系统的安全时提供后备。通过采用这种架构,我们为可以用确定性有限自动机(DFA)的接受语言表示的那些类别的安全规范的满足提供了正式的概率保证,而基于人工智能的控制器虽然不可靠,但仍可以在控制回路中使用。
The Mayor's Offi ce would also like to acknowledge contributions of Metro residents, stakeholder groups, current council members, Metro Council offi ce, former Mayor Bill Purcell, the Tennessee Department of Transportation, WeGo Public Transit, Greater Nashville Regional Council, Federal Transit Administration, Federal Highway Administration, Nashville Area Chamber of Commerce, Community Listening Session hosts, assistance from Metro Planning, Public Works, Water Services/Stormwater, ITS, and公园系和当地大学。
摘要 — 近来,电力系统的脱碳已导致人们为设计一条通往 100% 可再生能源 (RER) 的道路而付出了巨大的努力。本文提出了一种新颖的运营模式,以使互联的 100% RER 微电网有效参与交易能源市场。所提模型的新颖性主要与使用交易能源技术为 100% RER 微电网开发免费能源交易环境作为本地能源交易市场以在系统中建立动态能源平衡有关。为了捕捉系统中的间歇性,在放松管制的环境中提出了一种具有风险规避和风险追求策略的随机规划和信息差距决策理论 (IGDT) 方法的混合版本。通过选择改进的 IEEE 14 总线测试系统来验证所提出的模型。结果表明,当微电网同时参与交易能源市场时,所提出的模型在为微电网提供相同百分比的成本节省方面是有效的。基于该模型的微电网在交易能源市场中的合作能源互动与基础模型相比可节省18.34%的成本。
图 3-17 受影响的受访者 ............................................................................................. 3.1-13 图 3-18 希望被联系 ............................................................................................. 3.1-13 图 3-19 担心受到影响 ............................................................................................. 3.1-14 图 3-20 危险等级 ............................................................................................. 3.1-14 图 4-1 联邦灾害声明地图 ............................................................................................. 4.1-2 图 4-2 Davidson 县内的大坝和堤坝 ............................................................................. 4.1-6 图 4-3 J. Percy Priest 大坝 ............................................................................................. 4.1-8 图 4-4a Old Hickory 大坝 ............................................................................................. 4.1-8 图 4-4b Wolf Creek 大坝 ............................................................................................. 4.1-9 图 4-4c Center Hill 大坝 ............................................................................................. 4.1-9 图 4-5 Center希尔大坝溃坝情景 ................................................................................ 4.1-10 图 4-6 坎伯兰河系统 ...................................................................................... 4.1-11 图 4-7 都会中心堤坝修复 ................................................................................ 4.1-12 图 4-8 都会中心堤坝建设 ...................................................................................... 4.1-13 图 4-9 修复后的铁路封闭 ...................................................................................... 4.1-14 图 4-10 2010 年 5 月的沙袋 ...................................................................................... 4.1-14 图 4-11 I-65 内陆堤坝 ............................................................................................. 4.1-14 图 4-12 都会中心堤坝(2019 年) ............................................................................. 4.1-14 图 4-13 都会中心堤坝(2019 年) ............................................................................. 4.1-14 图 4-14 纳什维尔 Chew Crew ........................................................................... 4.1-14 图 4-15 大都会中心泵站 .............................................................................. 4.1-15 图 4-16 新站排水 .............................................................................................. 4.1-15 图 4-17 Opryland 综合体 2010 年 5 月洪水 ............................................................. 4.1-17 图 4-18 Opryland 防洪墙 ...................................................................................... 4.1-17 图 4-19 Opryland 堤坝泵站 ............................................................................. 4.1-18 图 4-20 Davidson 县流域 ............................................................................. 4.1-21 图 4-21 Davidson 县洪灾危险区 .............................................................................4.1-22 图 4-22 重复损失区域 .......................................................................................... 4.1-34 图 4-23 纳什维尔降水趋势 ...................................................................................... 4.1-54 图 4-24 纳什维尔温度趋势 ...................................................................................... 4.1-54 图 4-25 纳什维尔历史气候趋势 ...................................................................................... 4.1-54 图 4-26 广义地质图 ............................................................................................. 4.1-55 图 4-27a 新马德里地震区示意图 ............................................................................. 4.1-55 图 4-27b 东田纳西地震区示意图 ............................................................................. 4.1-56 图 4-28 峰值水平加速度 ............................................................................................. 4.1-58 图 4-29 地震活动 ............................................................................................................. 4.1-58 图4-30 地震灾害地图 ................................................................................ 4.1-60 图 4-31 I-24 滑坡 .............................................................................................. 4.1-61 图 4-32 滑坡证据 .............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水后滑坡证据 ...................................................................... 4.1-62 图 4-34a 斜坡失效位置 ...................................................................................... 4.1-63 图 4-34b 大于 25% 的斜坡 ...................................................................................... 4.1-63 图 4-35 局部天坑 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ............................................................................................. 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................................... 4.1-66 图4-38 TN 应报告疾病清单 ...................................................................... 4.1-68 图 4-39 天然气管道图 .............................................................................. 4.1-704.1-56 图 4-28 峰值水平加速度 ...................................................................................... 4.1-58 图 4-29 地震活动 .............................................................................................. 4.1-58 图 4-30 地震危险图 ...................................................................................... 4.1-60 图 4-31 I-24 滑坡 ............................................................................................. 4.1-61 图 4-32 滑坡证据 ............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水之后的滑坡证据 ............................................................. 4.1-62 图 4-34a 边坡失效位置 ............................................................................................. 4.1-63 图 4-34b 大于 25% 的边坡 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ...................................................................................... 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................... 4.1-66 图 4-38 TN 应报告疾病列表 ...................................................................... 4.1-68 图 4-39 天然气管道地图 ...................................................................................... 4.1-704.1-56 图 4-28 峰值水平加速度 ...................................................................................... 4.1-58 图 4-29 地震活动 .............................................................................................. 4.1-58 图 4-30 地震危险图 ...................................................................................... 4.1-60 图 4-31 I-24 滑坡 ............................................................................................. 4.1-61 图 4-32 滑坡证据 ............................................................................................. 4.1-62 图 4-33 2010 年 5 月洪水之后的滑坡证据 ............................................................. 4.1-62 图 4-34a 边坡失效位置 ............................................................................................. 4.1-63 图 4-34b 大于 25% 的边坡 ............................................................................................. 4.1-65 图 4-36 喀斯特灾害地图 ...................................................................................... 4.1-65 图 4-37 Davidson 县天坑地图 ...................................................................... 4.1-66 图 4-38 TN 应报告疾病列表 ...................................................................... 4.1-68 图 4-39 天然气管道地图 ...................................................................................... 4.1-70
如表 4-1 所述,本总体规划中使用的 PAL 大约对应于“航空需求预测”一章中提出的五年增量。这些 PAL 代表基于活动的里程碑,可用于制定未来设施改进决策,重点关注触发设施改进要求的具体活动量。值得注意的是,总体规划预测对航空公司和飞机的组合做出了某些假设,以及对将乘客送入航站楼、提供安全保障等所需流程做出了假设。通过持续监控未来的航空活动,纳什维尔大都会机场管理局 (MNAA) 可以检测到这些假设的变化并根据需要调整资本改进计划。
�������������������������������������������� � ���������������������������������������������� ���������������������������������������������� ����������������������������������������������� ���������� ������������
我们的目标是合理地保证整个财务报表不存在因欺诈或错误而导致的重大错报,并出具包含我们意见的审计报告。合理保证是一种高水平的保证,但不是绝对保证,因此不能保证按照美国 GAAS 进行的审计总能发现存在的重大错报。由于欺诈而导致的重大错报无法被发现的风险高于由于错误而导致的重大错报,因为欺诈可能涉及串通、伪造、故意遗漏、虚假陈述或超越内部控制。如果错报单独或总体上极有可能影响合理使用者根据财务报表做出的判断,则错报被视为重大错报。