• AAT: alpha-1 antitrypsin • AATD: alpha-1 antitrypsin deficiency • AAV: adeno-associated virus • CF: cystic fibrosis • CFTR: cystic fibrosis transmembrane conductance regulator • CKD: chronic kidney disease • COPD: chronic obstructive pulmonary disease • Cas9: CRISPR-associated protein 9 • CRISPR: clustered regularly interspaced short palindromic repeats • ESKD: end-stage kidney disease • FDA: US Food and Drug Administration • FEV1: forced expiratory volume in 1 second • HSCs: hematopoietic stem cells • IPF: idiopathic pulmonary fibrosis • LNPs: lipid nanoparticles • PH1: primary hyperoxaluria type 1 • PKD: polycystic kidney disease • rAAV:重组腺相关的病毒载体•siRNA:小干扰RNA•TGF-β:转化生长因子β•UABC:高层基础干细胞
• RNA 介导的基因表达 (RNA i , ASO) 涉及使用小 RNA 分子 (例如 siRNA、miRNA) 来沉默导致疾病的特定基因。这可用于治疗多种疾病,包括病毒感染、癌症和遗传疾病。通过阻止有害蛋白质的产生,RNAi 可以帮助防止疾病进展并改善患者的预后 • mRNA (信使 RNA) 疗法涉及使用合成的 mRNA 分子在患者体内产生治疗性蛋白质。这种方法可用于治疗遗传疾病以及癌症和传染病等疾病。合成的 mRNA 使用脂质纳米颗粒或其他递送方法递送到细胞中,旨在使靶细胞能够产生治疗性蛋白质
急性肾脏损伤(AKI)是一种危重疾病,死亡率很高,并且经常发展为慢性肾脏疾病,而没有特定原因治疗。了解其机制对于识别生物标志物和开发靶向疗法至关重要。特别是,在许多疾病模型中都研究了基因治疗,包括siRNA,特别是通过免费序列沉默的靶基因,其中一些药物/方法正在临床试验中。但是,将基因改良剂传递到所需细胞已被证明非常具有挑战性。本期“急性肾脏损伤:分子机制和有针对性的治疗方法”,邀请了有关AKI病理生理学,生物标志物和治疗策略的研究和审查文章。我们欢迎对临床前研究和旨在改善肾脏疾病结局并提高精确医学的贡献。
RNA干扰(RNAi)是一种生物技术工具,用于植物中的基因沉默,具有内源性和外源性应用。内源性方法,例如宿主诱导的基因沉默(HIG),涉及基因修饰(GM)植物,而外源方法包括喷雾诱导的基因沉默(SIGS)。RNAi机制取决于引入双链RNA(dsRNA),该RNA被处理成简短的干扰RNA(siRNA),从而降低了特定的Messenger RNA(mRNA)。然而,由于序列同源性或siRNA诱导的表观遗传变化,对非目标生物和GM植物的意外影响是一个问题。EPA和EFSA等监管机构强调需要进行全面的风险评估。检测意外效果是复杂的,通常依靠生物信息学工具和不靶向的分析(例如转录组学和代谢组学),尽管这些方法需要广泛的基因组数据。本综述旨在对植物中不同来源的简短干扰RNA引起的RNAi效应的机制进行分类,并确定可用于检测这些作用的技术。此外,总结了实际案例研究,并讨论了以前对基因修饰植物中的意外RNAi效应进行了研究。当前文献受到限制,但表明RNAi是相对特定的,在GM作物中几乎没有意外的影响。但是,需要进一步的研究来充分理解和减轻潜在风险,尤其是与转录基因沉默(TGS)机制相关的风险,这些机制比转录后基因沉默(PTGS)不那么可预测。尤其是应用不靶向方法的应用,例如小的RNA测序和转录组学,以进行彻底和全面的风险评估。
营养物质通过血脑验室(BBB)的各种转运蛋白(BBB)积极吸收。老年大脑缺乏特定的营养,包括doco-sahexaenoic酸(DHA)的水平降低与记忆和认知功能障碍有关。要补偿脑DHA的减少,必须通过运输载体将口服的DHA从Cir-Culting Acculting Acculting Flows运输到大脑,包括主要的辅助超家族域含有领域的蛋白2A(MFSD2A)和脂肪酸结合蛋白5(FABP5),这些蛋白5(Fabp5)具有运输和非遗传性DHA。尽管众所周知,BBB的完整性在衰老过程中发生了变化,但衰老对跨BBB的DHA转运的影响尚未完全阐明。我们使用原位跨心脑灌注技术使用了2-,8-,12个和24个月大的雄性C57BL/6小鼠,以评估[14 C] DHA的脑摄取,作为非层化形式。使用大鼠脑内皮细胞(RBEC)的原发性培养物来评估siRNA介导的MFSD2A敲低对[14 C] DHA的细胞摄取的影响。我们观察到,与2个月大的小鼠相比,脑摄取[14 C] DHA的脑摄取显着降低了[14 C] DHA的脑摄取显着降低,并且MFSD2A蛋白表达降低,与2个月大的小鼠相比,MFSD2A蛋白表达降低。然而,FABP5蛋白表达随着年龄的增长而上调。[14 C] DHA的脑摄取被过量未标记的DHA抑制。将MFSD2A siRNA转染到RBEC中,将MFSD2A蛋白表达水平降低了30%,并将[14 C] DHA的细胞摄取降低20%。这些结果表明MFSD2A参与了BBB的非固定DHA运输。因此,随着衰老而发生的DHA跨BBB的下降可能是由于年龄相关的MFSD2A而不是FabP5引起的。
沉默和基因版是两个有前途的分子生物学工具,它们在功能基因组学研究中变得越来越重要。基因沉默作用于信使RNA(mRNA)的水平,并且可能是瞬态或稳定的,具体取决于所使用的分子类型。临时沉默通常是由小的干扰RNA(siRNA)介导的,后者与靶mRNA结合,并借助酶复合物RISC导致其降解,因此抑制了特定基因的表达,因为不会发生翻译过程(图1)。另一方面,稳定的沉默通常用作工具,作为一种短发夹RNA(SHRNA),通常由DNA载体编码,并通过质粒转染或病毒转导将其引入细胞中。DNA载体带有转录本信息以及选择标记(例如抗生素耐药性和/或荧光标记),使用了
摘要。食管癌的预后不佳。已获批准的药物主要集中在治疗效果一般的化疗上。最近,检查点抑制单克隆抗体 Pembrolizumab 获批。为了确定治疗食管鳞状细胞癌 (ESCC) 的新靶点和方式,我们在文献中搜索了与 ESCC 发病机制有关的 circRNA。我们确定了两个下调和 17 个上调的 circRNA,以及一个在临床前体内系统中有效的合成 circRNA。下调的 circRNA 吸收针对肿瘤抑制基因的 microRNA。上调的 circRNA 吸收针对 mRNA 的 microRNA,后者编码具有促肿瘤功能的蛋白质。我们讨论了下调 circRNA 的重建和使用短干扰 RNA (siRNA) 相关实体抑制上调 circRNA 等问题。此外,我们还讨论了已确定靶点的药物可行性问题。
缩写ACC,腺样囊性癌;芯片,染色质免疫沉淀; CHIP-SEQ,染色质免疫沉淀测序; dab,二氨基苯甲胺; dox,多西环素; EV,空矢量; FDR,错误发现率; GFP,绿色荧光蛋白;去,基因本体论; GSEA,基因集富集分析; HEGF,人类表皮生长因子; Mac,基于模型的芯片序列分析; MBS,MYB绑定站点; NES,归一化富集评分; NSG,正常的唾液腺; p adj,p值调整; PDX,患者衍生的异种移植物; penstrep,青霉素 - 链霉素; RLU,相对光单元; RMA,强大的多阵列平均值; RNA-seq,RNA测序; RT-QPCR,实时定量PCR; siRNA,小干扰RNA; TMA,组织微阵列; TSS,转录开始站点;谁,世界卫生组织; XPDX,Xenostart患者衍生的异种移植物。
保质期,木质素含量的减少,营养品质的增强,细菌和病毒耐药性,改变的花色等。(Le and Wang 2011; Tiwari等人2014)。尽管其他形式的反义技术(例如RNAi,siRNA和miRNA)已被广泛用于修饰和改善农作物的各种目的,但使用asrna的使用正在获得更多的接受度(Xu等人 2018; Tilahun等。 2021; Sinha等。 2023)。 因此,使用反义RNA技术改善了高经济和文化意义的农作物(表1),而在最近的十年中,更多的农作物是更多的关注和研究兴趣,这是针对反义RNA在作物改善中的应用。 此外,小型非编码RNA已被用作一种生物学工具,以在没有特定方式的特定方式中在体外和体内和调节基因中研究基因功能2018; Tilahun等。2021; Sinha等。2023)。因此,使用反义RNA技术改善了高经济和文化意义的农作物(表1),而在最近的十年中,更多的农作物是更多的关注和研究兴趣,这是针对反义RNA在作物改善中的应用。此外,小型非编码RNA已被用作一种生物学工具,以在没有特定方式的特定方式中在体外和体内和调节基因中研究基因功能
柔道生物正在开创授予肾脏的寡核苷酸药物,为全身性和肾脏疾病的新遗传药物开辟了道路。凭借其罢工(选择性地将RNA靶向肾脏)平台,该公司正在使用专有方法来创建专为受体介导的特定肾细胞类型的更新而设计的配体RNA共轭药物,从而导致疾病调整靶基因的基因沉默。柔道生物的初始管道计划是使用Megalin受体家族的巨型杀手,将siRNA Therapeutics有选择地传递到肾脏的近端小管中,以使特定溶质载体蛋白(SLC)表达mRNA表达mRNA,从而抑制循环溶液链接的溶液链接的系统链接。位于马萨诸塞州剑桥市,柔道生物的团队和顾问包括寡核苷酸疗法和创新药物开发专家。有关更多信息,请访问www.judo.bio,然后在LinkedIn上关注我们。