本文试图探索法律与人工智能之间的相互联系,重点关注其范围和挑战。人工智能自诞生以来就飞速发展,旨在将人类思维复制到机器中。尼泊尔最大的邻国已向前迈进了一步,开发了第一个律师机器人,但在尼泊尔,其范围尚未得到研究和讨论。因此,本文探讨了尼泊尔法律领域人工智能的不断增长的范围和挑战。它分析了人工智能在法律领域的范围,以找出其在法律研究、判例法管理、电子发现、文件准备、合同审查、证据评估等法律领域的重要性。尽管在法律领域有充足的空间,但它面临着许多挑战,包括实施成本高昂的问题。政策制定者需要更多地了解基于人工智能的工具来发展国家。本文的结论是,尽管有足够的空间,但在尼泊尔实施人工智能和基于法律的工具仍然很困难。应该进行适当的研究来实施基于人工智能的工具来取代法律领域的旧传统机制。
● 用连续的 n+ 层代替分段的 n++ 层 ● n+ 层中的电信号交流耦合到读出垫/条,它们之间用薄介电材料隔开。 ● 条/垫之间的电荷共享显著提高了空间分辨率并保持了时间分辨率!
从http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.cd22-22-22-0952/3404475/cd-22-22-22-0952.pdf by bern University by Bern Universiti
1 1个数字健康干预中心,管理,技术和经济系,苏黎世,苏黎世,瑞士2号,瑞士2德国4个管理学院,路德维希 - 马克西利亚人 - 苏尼琴,慕尼黑,慕尼黑,德国5号5数字健康干预中心,技术管理研究所,圣加伦大学,圣加伦大学,瑞士圣加伦大学6内分泌学和代谢性疾病系,瑞士,瑞士,瑞士,科学,瑞士,科学,科学,科学,瑞士,科学,瑞士,科学。瑞士苏黎世苏黎世大学医疗保健9瑞士圣加伦大学医学院
由欧洲健康管理协会 (EHMA) 于 2024 年 11 月发布。© 2024 EHMA。保留所有权利。本报告仅可用于个人、研究或教育用途,不得用于商业目的。除非获得欧洲健康管理协会 (EHMA) 的许可,否则禁止对本报告的内容进行任何改编或修改。
在关于国际废物贸易的辩论中,对资源效率和回收利用的关注逐渐开始伴随着否定环境外部性的关注。在这种情况下,我们研究了扩展生产者责任(EPR)对废物蝙蝠出口(WB)的影响。EPR被认为是“废物市场化”的关键政策。另一方面,WB是一种危险废物,也含有高浓度的关键原材料。因此,它们对于恢复关键资源的战略重要性,同时需要适当的环境管理。因此,对于处理WB的情况以及如何影响相关策略的情况至关重要。我们的结果基于重力框架中的差异差异模型,在EPR实施与其他废物的趋势相结合后,WB出口显示出一致的增加。此结果可能是间接的
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
计算机视觉社区过去主要集中于视觉算法的开发,用于对象检测,跟踪和分类,并在白天和类似办公室的环境中使用可见的范围传感器。在过去的十年中,红外线(IR),深度,X射线和其他不可见名的成像传感器仅在医学和防御等特殊领域中使用。与传统的计算机视觉相比,在这些感觉领域的兴趣相对较低,部分原因是它们的高成本,低分辨率,图像质量差,缺乏广泛可用的数据集以及/或缺乏对频谱不可访问的部分的优势的考虑。随着传感器技术的迅速发展,传感器成本急剧下降,这些局限性正在克服。此外,对安全和可靠性是主要问题的自主系统的兴趣日益增强,强调了强大的感知系统的重要性。在此类关键系统中,在不同频谱中运行的传感器相互补充,以克服每个单独的传感器的局限性,以在各种照明和天气条件下提供强大而可靠的感知。
○ 人类的主导和监督:人工智能系统应该赋予人类权力 ○ 技术稳健性和安全性:人工智能系统需要具有弹性和安全性 ○ 隐私和数据治理:必须确保数据治理机制 ○ 透明度:数据、系统和人工智能商业模式应该透明 ○ 多样性、非歧视和公平性:人工智能系统应该对所有人都开放 ○ 社会和环境福祉:人工智能系统应该造福全人类 ○ 问责制:确保对人工智能系统及其结果的责任和问责
